ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The role of unsteady flow processes in establishing the performance of axial flow turbomachinery was investigated. The development of the flow model, as defined by the time average flow equations associated with the passage of the blade row embedded in a multistage configuration, is presented. The mechanisms for unsteady momentum and energy transport is outlined. The modeling of the unsteady momentum and energy transport are discussed. The procedure for simulating unsteady multistage turbomachinery flows is described.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: A mathematical model for closing or mathematically completing the system of equations is proposed. The model describes the time average flow field through the blade passages of multistage turbomachinery. These average-passage equation systems govern a conceptual model useful in turbomachinery aerodynamic design and analysis. The closure model was developed to insure a consistency between these equations and the axisymmetric through-flow equations. The closure model was incorporated into a calculation code for use in the simulation of the flow field about a high-speed counter rotating propeller and a high-speed fan stage.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The objective of this study is to provide careful qualification and detailed measurements in a re-creation of the Obi experiment. The work will include extensive documentation of the flow two-dimensionality and detailed measurements required for testing of flow computations. Also important to this study is the close interaction of the experimental and computational groups to improve the utility of the data obtained and the accuracy of computation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Annual Research Briefs-1996; 243-248; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The effect of the unsteady flow field in a multistage compressor on the time-averaged performance was assessed. The energy transport by the unsteady deterministic flow field was taken into account. The magnitude of the body force resulting from the aerodynamic loading on a blade row was compared to the gradient of the stress tensor associated with the unsteady time-resolved flow field generated by the blade row. The magnitude of the work performed by these forces was compared to the divergence of the energy correlations produced by the unsteady time-resolved flow field. The stress tensor and the energy correlations are non-negligible in the end wall regions. The results suggest that the turbulence is the primary source of flow mixing in the midspan region.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-22
    Description: A steady, three dimensional average-passage equation system was derived. The purpose was to simulate multistage turbomachinery flows. These equations describe a steady, viscous flow that is periodic from blade passage to blade passage. Moreover, these equations have a closure problem that is similar to that of the Reynolds-average Navier-Stokes equations. A scaled form of the average-passage equation system could provide an improved mathematical model for simulating the flow in the design and in the off-design conditions of a multistage machine.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Unsteady Flows in Turbomachines; Volume 2; VKI-LS-1996-05-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Description: The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 773-778; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: We are beginning laboratory experiments using magnetically active ferrofluids to study surface waves in novel geometries. Terrestrial gravity is eliminated from the dynamics, and the magnetic body force felt by ferrofluid in the presence of a magnetic field gradient is used to create a geopotential field which is a section of or an entire sphere or cylinder. New optical, electromagnetic and ultrasonic diagnostic techniques are under development to initially study capillary-gravity wave propagation and interaction in such geometries.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 717-721; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and to perform a series of experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop is also instrumented to generate data for two-phase pressure drop. In addition to low gravity airplane trajectory testing, the experimental program consisted of a set of laboratory tests which were intended to generate data under the bounding conditions (+1 g and -1 g) in order to plan the test matrix. One set of airplane trajectory tests has been performed and several modifications to the test set-up have been identified. Preliminary test results have been used to demonstrate the applicability of the earth gravity models for prediction of the two-phase friction pressure drop.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 109-114; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: Experimental investigation of the rewetting characteristics of a uniformly heated grooved surface was performed, the results of which are presented in this work. It was found that, for a rewetting fluid of 2-propanol, the rewetting temperature was approx. 93-96 C for the upward-facing case and about 2 C lower for the downwardfacing case. When the initial plate temperature was higher than the rewetting temperature, the rewetting speed decreased with the initial plate temperature. The rewetting speed is also faster in the upward-facing case than in the downward-facing case for the same initial plate temperatures, which indicates a gravitational effect on rewetting. This trend is found to be consistent with the previously investigated end heating condition. The rewetting distance that is predicted by the conduction controlled model is found to be in fair agreement with the experimental data. Also, an apparatus that enables experiments to be performed in a reduced gravitational environment has been built and experiments are currently being performed. The design of this apparatus is presented along with preliminary data.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 207-212; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...