ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 1050-1055 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Two rice α-amylase isozymes, AmylA and Amy3D, were produced by secretion from genetically engineered strains of Saccharomyces cerevisiae. They have distinct differences in enzymatic characteristics that can be related to the physiology of the germinating rice seed. The rice isozymes were purified with immunoaffinity chromatography. The pH optima for amy3D (pH optimum 5.5) and Amy1A (pH optimum 4.2) correlate with the pH of the endosperm tissue at the times in rice seedling development when these isozymes are produced. Amy3D showed 10–14 times higher reactivity to oligosaccharides than Amy1A. Amy1A, on the other hand, showed higher reactivity to soluble starch and starch granules than Amy3D. These results suggest that the isozyme Amy3D, which is expressed at an early stage of germination, produces sugars from soluble starch during the early stage of seed germination and that the isozyme Amy1A works to initiate hydrolysis of the starch granules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Genes responsible for genetic diseases with increased sensitivity to DNA-damaging agents can be identified using complementation cloning. This strategy is based on in vitro complementation of the cellular sensitivity by gene transfer. Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disorder involving cellular sensitivity to ionizing radiation and radiomimetic drugs. A-T is genetically heterogeneous, with four complementation groups. We attempted to identify cDNA clones that modify the radiomimetic sensitivity of A-T cells assigned to complementation group [A-T(A)]. The cells were transfected with human cDNA libraries cloned in episomal vectors, and various protocols of radiomimetic selection were applied. Thirteen cDNAs rescued from survivor cells were found to confer various degrees of radiomimetic resistance to A-T(A) cells upon repeated introduction, and one of them also partially influenced another feature of the A-T phenotype, radioresistant DNA synthesis. None of the clones mapped to the A-T locus on chromosome 11q22-23. Nine of the clones were derived from known genes, some of which are involved in cellular stress responses. We concluded that a number of different genes, not necessarily associated with A-T, can influence the response of A-T cells to radiomimetic drugs, and hence the complementation cloning approach may be less applicable to A-T than to other diseases involving abnormal processing of DNA damage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 145 (1995), S. 131-139 
    ISSN: 1573-4919
    Keywords: glycogen phosphorylase ; alloxan-diabetes ; cardiomyocytes ; cGMP ; phosphodiesterase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The focus of this study was to identify the molecular basis for the hypersensitive response of glycogen phosphorylase activation to epinephrine stimulation in alloxan diabetic-derived cardiomyocytes. Cyclic AMP levels were found not to be significantly different between normal and diabetic-derived cells while cGMP concentrations were found consistently to be significantly lower in diabetic-derived cells than in normal cells. Treatment with cyclic GMP analogues did not affect phosphorylase activation by epinephrine in normal cardiomyocytes whereas, IBMX, a nonselective phosphodiesterase inhibitor, had a significant effect on basal and agonist-stimulated phosphorylase activity in both normal and diabetic-derived cardiomyocytes. Differences in the time course for the rate of decay of phosphorylasea from agonist-stimulated to basal levels were observed between normal and diabetic cells. After 3 h in primary culture, phosphorylasea activity returned to basal levels more quickly in normal than in diabetic-derived cells while after 24 h in culture, the time for phosphorylasea decay was not significantly different between normal and diabetic myocytes and was longer than the 3 h response. After 3 h in primary culture, no significant difference in phosphorylase kinase activity was observed between normal and diabetic-derived cells exposed to epinephrine whereas, after 24 h in culture, phosphorylase kinase activity was significantly decreased in diabetic cells under basal and agonist-stimulated conditions. These data collectively suggest that the hypersensitive response of glycogen phosphorylase to epinephrine stimulation in diabetic-derived cardiomyocytes is not due to a defect present at the level of phosphorylase kinase but may, in part, result from an alteration in cardiac phosphodiesterase activity resulting from diminished intracellular cyclic GMP concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-11-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-04-01
    Print ISSN: 0300-8177
    Electronic ISSN: 1573-4919
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...