ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (74)
  • Solar Physics  (47)
  • Aerospace Medicine  (27)
  • Engineering
  • Life and Medical Sciences
  • 2000-2004
  • 1995-1999  (74)
  • 1995  (74)
Collection
Years
  • 2000-2004
  • 1995-1999  (74)
Year
  • 1
    Publication Date: 2011-08-24
    Description: The importance of interstellar neutrals in understanding and modelling the global interaction of the solar wind with the local interstellar medium is becoming increasingly apparent. Unfortunately the self-consistent inclusion of a neutral interstellar component into time-dependent, dynamical models is formidably difficult due to the extremely large mean free paths associated with the neutrals and the creation of essentially different neutral distributions from different interaction regions of the solar wind and LISM. In full generality, one has to address the problem by treating the neutrals kinetically with the appropriate extinction and creation source terms. In this paper, a limited set of simulations will be presented in which the solar wind and interstellar plasma is described as a 2D fully compressible time-dependent fluid while the interstellar neutral distribution is derived by solving the appropriate Boltzmann equation directly.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 109; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The primary goal of the Ultraviolet Coronal Spectrometer on Spartan 201 (UVCS/Spartan) is to make spectroscopic diagnostic measurements that can be used to derive plasma parameters in the extended solar corona where it is believed that significant heating of the corona and acceleration of the solar wind take place. Direct and indirect measurements of particle velocity distribution, thermal and non-thermal temperatures, and bulk outflow velocities are crucial to aid in the identification of physical processes that may be responsible for coronal heating and solar wind acceleration. UVCS/Spartan has made two flights in April 1993 and September 1994, the latter coinciding with the South Polar Passage of the Ulysses spacecraft. Observations were made of the large-scale structures and sub-structures of coronal holes and streamers at heliocentric heights between 1.5 solar radii and 3.5 solar radii. Measurements were made of H I Lyman-alpha intensities and profiles, and line intensities of minor ions like O(5+) and Fe(11+). We will present results from the flights and discuss how these measurements are used to constrain values for the proton thermal and non-thermal kinetic temperatures, proton bulk outflow velocities, and minor ion temperatures and bulk outflow velocities. Plans for the upcoming flight in July 1995 will also be discussed.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 29; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory dynamics during 2.5 hours of sleep by fast Fourier transform analysis of beat to beat heart rate and of an electrocardiographically derived respiration signal. RESULTS--All subjects had resting hypoxaemia at high altitude, with an average oxyhaemoglobin saturation of 81% (5%). There was no significant change in mean heart rate, but low frequency (0.01-0.05 Hz) spectral power was increased (P 〈 0.01) at high altitude. Time series analysis showed a complex range of non-linear sinus rhythm dynamics. Striking low frequency (0.04-0.06 Hz) heart rate oscillations were observed during sleep in eight subjects at high altitude. Analysis of the electrocardiographically derived respiration signal indicated that these heart rate oscillations correlated with low frequency respiratory oscillations. CONCLUSIONS--These data suggest (a) that increased low frequency power during high altitude exposure is not simply attributable to increased sympathetic modulation of heart rate, but relates to distinctive cardiopulmonary oscillations at approximately 0.05 Hz and (b) that the emergence of periodic heart rate oscillations at high altitude is consistent with an unstable cardiopulmonary control system that may develop on acute exposure to hypoxaemic stress.
    Keywords: Aerospace Medicine
    Type: British heart journal (ISSN 0007-0769); 74; 4; 390-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Direct X-ray observations allow us to estimate the hot coronal mass before and after a flare or other disturbance of the type leading to a coronal mass ejection. The sudden disappearance of a large coronal structure (scale greater than 105 km) gives evidence that an ejection has occurred, if the time scales are much shorter than the conductive or radiative cooling times for such structures. A flare also typically adds large amounts of new material to the corona via evaporation resulting from the coronal energy release. This provides a competing mechanism that makes the estimation of the total mass loss somewhat difficult. We note that the X-ray observations have the advantage of covering the entire corona rather than the limb regions unlike the coronagraph observations. We have identified two examples of coronal mass disappearances. before and during long duration flare events on 21 Feb. 1992 (on the E limb) and 13 Nov. 1994 (near disk center). In latter case the total mass amounted to some 4 x 10(exp 14) g with a density of 3 x 10(exp 8)cm(exp -3) and a temperature of 2.8 MK before its disappearance. This corresponds to a radiative cooling time of some 104 S. much longer than the observed time of disappearance. We therefore suggest that these sudden mass disappearances correspond with coronal mass ejections (CMEs), and suggest that further data analysis will be able to confirm this by comparison with optical observations of specific CMEs.
    Keywords: Solar Physics
    Type: ; 58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: We investigate the interaction between the heliosphere and local interstellar medium, including charge-exchange self-consistently between the neutral and ionized components. The system is modelled as consisting of neutral hydrogen, protons and electrons. The electrons are assumed to contribute to the dynamics via a pressure that is everywhere equal to the proton pressure. The fluid equations for the protons and hydrogen are solved self-consistently, assuming the two species interact only via charge exchange. The protons are treated as a single isotropic fluid. The hydrogen is decomposed into three isotropic fluids: hydrogen of interstellar origin with characteristic temperature of approximately 104 K, hydrogen produced via charge exchange in the post-shock solar wind, with characteristic temperature of approximately 105 K, and hydrogen produced via charge exchange in the supersonic solar wind, relatively cool but expanding radially outward with the solar wind speed. Two-Dimensional time-dependent numerical simulations of this system are performed to calculate the number density, temperature and bulk velocity of neutral hydrogen and plasma everywhere in the heliosphere. These quantities are compared to relevant solar wind observations. Implications for the pick-up process in the supersonic solar wind, as well as heating and deceleration of the wind, are addressed.
    Keywords: Solar Physics
    Type: ; 53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The Yohkoh/SXT images provide full-disk coverage of the solar corona, usually extending before and after one of the large-scale eruptive events that occur in the polar crown These produce large arcades of X-ray loops, often with a cusp-shaped coronal extension, and are known to be associated with coronal mass ejections. The Yohkoh prototype of such events occurred 12 Nov. 1991. This allows us to determine heights from the apparent rotation rates of these structures. In comparison v with magnetic-field extrapolations from Wilcox Solar Observatory. use use this tool to infer the three dimensional structure of the corona in particular cases: 24 Jan. 1992, 24 Feb. 1993, 14 Apr. 1994, and 13 Nov. 1994. The last event is a long-duration flare event.
    Keywords: Solar Physics
    Type: ; 63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 68; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: BACKGROUND AND PURPOSE: Presyncope, characterized by symptoms and signs indicative of imminent syncope, can be aborted in many situations before loss of consciousness occurs. The plasticity of cerebral autoregulation in healthy humans and its behavior during this syncopal prodrome are unclear, although systemic hemodynamic instability has been suggested as a key factor in the precipitation of syncope. Using lower body negative pressure (LBNP) to simulate central hypovolemia, we previously observed falling mean flow velocities (MFVs) with maintained mean arterial blood pressure (MABP). These findings, and recent reports suggesting increased vascular tone within the cerebral vasculature at presyncope, cannot be explained by the classic static cerebral autoregulation curve; neither can they be totally explained by a recent suggestion of a rightward shift in this curve. METHODS: Four male and five female healthy volunteers were exposed to presyncopal LBNP to evaluate their cerebrovascular and cardiovascular responses by use of continuous acquisition of MFV from the right middle cerebral artery with transcranial Doppler sonography, MABP (Finapres), and heart rate (ECG). RESULTS: At presyncope, MFV dropped on average by 27.3 +/- 14% of its baseline value (P 〈 .05), while MABP remained at 2.0 +/- 27% above its baseline level. Estimated cerebrovascular resistance increased during LBNP. The percentage change from baseline to presyncope in MFV and MABP revealed consistent decreases in MFV before MABP. CONCLUSIONS: Increased estimated cerebrovascular resistance, falling MFV, and constant MABP are evidence of an increase in cerebral vascular tone with falling flow, suggesting a downward shift in the cerebral autoregulation curve. Cerebral vessels may have a differential sensitivity to sympathetic drive or more than one type of sympathetic innervation. Future work to induce dynamic changes in MABP during LBNP may help in assessing the plasticity of the cerebral autoregulation mechanism.
    Keywords: Aerospace Medicine
    Type: Stroke; a journal of cerebral circulation (ISSN 0039-2499); Volume 26; 10; 1794-800
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Increased sensitivity of end-organ responses to neuroendocrine stimuli as a result of prolonged exposure to the relative inactivity of microgravity has recently been hypothesized. This notion is based on the inverse relationship between circulating norepinephrine and beta-adrenoreceptor sensitivity. The beta-adrenoreceptor activity is reduced in individuals who have elevated plasma norepinephrine as a result of regular exposure to upright posture and physical exercise. In contrast, adrenoreceptor hypersensitivity has been reported in patients with dysautonomias in which circulating catecholamines are absent or reduced. Taken together, these studies and the observation that circulating plasma norepinephrine has been reduced during spaceflight and in groundbased simulations of microgravity prompt the suggestion that adrenoreceptor hypersensitivity may be a consequence of the adaptation to spaceflight. We conducted an experiment designed to measure cardiovascular responses to adrenoreceptor agonists in human subjects before and after prolonged exposure to 6 deg head-down tilt (HDT) to test the hypothesis that adaptation to microgravity increases adrenoreceptor responsiveness, and that this adaptation is associated with reduced levels of circulating norepinephrine.
    Keywords: Aerospace Medicine
    Type: Journal of Gravitational Physiology, Volume 2, No. 1; 66-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Between 1 and 2 solar radii, the Coulomb-collision mean free path for thermal ions exceeds the scale height of the solar atmosphere. The expanding solar plasma becomes collisionless and the kinetics of the solar wind are no longer dominated by thermalizing collisions. The usual Braginskii-type expressions for solar wind ion heat flux and viscosity are no longer valid. However, another microscale still exists in the solar wind, dictated by the gyro-radius of ions in the turbulent embedded solar wind magnetic field. Wave-particle interactions will act to isotropize (but not thermalize) particle distributions, and the relevant microscale for this process is the ion gyro-radius. The ion distribution can be modelled as undergoing isotropizing 'collisions,' with the relevant mean free path scaling with gyro-radius. Here, the author presents the heat flux and viscosity expected for solar wind protons which are relaxing to isotropy on a microscale that scales with gyro-radius. The collisionless viscosity and heat flux have a functional dependence different than their collisional analogs. The collisional expressions for ion viscosity and heat flux drastically overestimate the efficiency of diffusive energy and momentum transport actually operative in the solar wind.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 74; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...