ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (109)
  • EARTH RESOURCES AND REMOTE SENSING
  • ENERGY PRODUCTION AND CONVERSION
  • GEOPHYSICS
  • Wiley-Blackwell  (109)
  • 1995-1999  (109)
  • 1980-1984
  • 1975-1979
  • 1996  (46)
  • 1995  (63)
Collection
Publisher
  • Wiley-Blackwell  (109)
Years
  • 1995-1999  (109)
  • 1980-1984
  • 1975-1979
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 495-502 
    ISSN: 0006-3592
    Keywords: optical cell density probes ; turbidity probes ; on-line monitoring ; in situ probes ; mammalian cell bioreactors/fermentors ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: On-line optical cell density probes were implemented to continuously monitor the cell densities in mammalian cell bioreactor and to achieve advanced bioreactor controls. We tested cell density probes from six manufacturers in high cell density bioreactors. When externally calibrated, Aquasant and Ingold backscattering probes produced the most linear probe responses (PR) versus cell density (CD), followed by the ASR and Cerex laser probes. Monitek and Wedgewood transmission probes had lower resolutions. All probes were tested in two murine hybridoma fermentations. Cell densities varied between 1 × 106 cells/mL to 20 × 106 cells/mL and the bioreactors were operated for 5 to 7 weeks. For our bioreactors, Aquasant, Ingold, ASR, Wedgewood, and Monitek probes gave satisfactory responses. Little fouling was observed with any probe at the end of 2 weeks. Fouling was a possibility after 3 weeks in one bioreactor but its effect can be easily corrected. Cell density control and specific perfusion control of bioreactors based on the Aquasant probe were achieved. Implementation of cell density probe based perfusion control, instead of “step perfusion adjustments” based on manual hemacytometer control, will result in smoother operation, healthier cultures, increased medium delivery efficiency, and reduced operational excursions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 461-469 
    ISSN: 0006-3592
    Keywords: trichloroethylene ; bioscrubber ; bubble column ; cometabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s-1 and TCE gas phase loads between 0.07 and 0.40 mg L-1 Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. © 1995 John Wiley & Sons Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 49-65 
    ISSN: 0006-3592
    Keywords: cell cycle ; apoptosis ; hybridoma ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Model presented in this work demonstrates the combination of cell-cycle model with a model describing the growth and conversion kinetics of hybridoma cells in a steady-state continuous culture. The cell-cycle model is based upon a population balance model as described by Cazzador et al. and assumes the existence of a cycling-and apoptotic-cell population, which together form the viable-cell population. In this part the fraction of apoptotic cells, the age distribution of the cycling and apoptotic-cell population, the mean volume and biomass content per cell of the cycling, apoptotic, and viable cells, and the specific growth and death rates of the cells are calculated. The metabolic part consists of a Monod-type growth equation, four elemental balances, an equation assuming a constant yield of ammonia on glutamine, an equation for product formation, and the relation of Glacken for energy production. Furthermore, a maintenance-energy model for the consumption of glucose and glutamine is introduced, which combines the approaches of Herbert and Pirt into one model in a way similar to Beeftink et al. For energy consumption a Pirt model is assumed. The model is capable of predicting trends in steady-state vaues of a large number of variables of interest like specific growth rate, specific death rate, viability, cell numbers, mean viable-cell volume, and concentrations and conversion rates of product, glucose, glutamine, lactate, and ammonia. Also the concentrations and conversion rates of oxygen and carbon dioxide are qualitatively predicted. The values of the model predictions are generally close to experimental data obtained from literature. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: one-line monitoring ; fermentation ; cell culture ; monoclonal antibodies ; real-time immunoassays ; BioCad/RPM ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: On-line, “real-time” monitoring of product concentration is important for mammalian cell culture fermentation. The continuous measurement of monoclonal antibodies allows for instantaneous determination of cell productivity and effective manipulation of the fermentor operating conditions for optimal production. This article will present the evaluation and application of a BioCad/RPM system (Per Septive Biosystems) for rapid analysis of lgG concentration for hybridoma cell cultivation. Several commercial crossflow filtration devices are tested for low protein retention and fouling properties. A protein G column is used successfully for analyzing about 400 samples of lgG1, without significant loss in separation efficiency. The Immuno Detection system is integrated into a computer-controlled 15-L fermentor. This fermentor could be operated in batch and perfusion modes with cell densities up to 20 million cells/mL. A continuous cell-free sample stream obtained by a hollow fiber filter system is introduced to the BioCad/RPM for analysis. The speed of this system allows for real-time monitoring even at high densities with fast dynamics. A murine hybridoma cell (A10G10) is cultivated in batch and continuous reactors and antibody concentration is measured continuously with complete sterility. The results are compared to offline measurements with good agreement. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 285-290 
    ISSN: 0006-3592
    Keywords: yeast ; ethanol ; amylases ; strain development ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A procedure was developed for construction of industrial strains of distiller's yeast (Saccharomyces cerevisiae). It includes several steps: construction of congenic genetically marked haploid strains of opposite mating types starting from an industrial strain of hybrid nature, integrative transformation of the above haploid strains with a DNA fragment containing an expression cassette responsible for new technological facilities, and hybridization of transformants and isolation of final industrial homozygous strains under experimental conditions simulating commercial fermentation processes. This strategy permits the generation of strains that have desirable characteristics of traditional races of distiller's yeast along with new technological facilities determined by the particular expression cassette. Using this procedure, we have constructed an industrial strain with improved amylolytic activity. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0173-0835
    Keywords: Capillary electrophoresis ; Experimental design ; Optimisation ; Robustness ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Various chemometric experimental designs have been employed for the optimisation of capillary electrophoresis (CE) methods. Similar designs have been utilised in the assessment of the robustness of CE methods. The designs employed include central composites, fractional factorials, Plackett-Burman, simplex and overlapping-resolution mapping. Optimisation studies have largely concentrated on the use of these designs on selection of the optimal electrolyte composition. The robustness testing studies performed have involved the use of screening designs to identify the critical parameters affecting responses such as migration times and resolution. Further designs such as central composites have then been employed to set method limits following robustness studies. It is concluded that the use of experimental designs and statistical data evaluation in conjunction with personal computer-controlled CE autosamplers and instruments are of great benefit in the optimisation and robustness evaluation of CE methods.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 399-409 
    ISSN: 0006-3592
    Keywords: cell damage ; cell culture ; bubble aeration ; agitation ; bubble coalescence and breakup ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 434-438 
    ISSN: 0006-3592
    Keywords: polyphosphate ; Escherichia coli ; phosphate starvation ; gene expression ; heterologous ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of intracellular polyphosphate on the phosphate-starvation response in Escherichia coli was studied by genetically manipulating the intracellular polyphosphate levels and by performing phosphate shifts on the genetically engineered strains. Strains that produced large quantities of polyphosphate and were able to degrade it induced the phosphate-starvation response to a lesser extent than wild-type strains, whereas strains that were unable to degrade a large intracellular polyphosphate pool induced the phosphate-starvation response to a greater extent than wild-type strains. These results have important implications for expression of heterologous genes under control of the phoA promoter. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 107-115 
    ISSN: 0006-3592
    Keywords: biofilm ; waste gas treatment ; hydrophobic microporous membrane ; mass transfer ; propene ; Xanthobacter ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel type of bioreactor for waste gas treatment has been designed. The reactor contains a microporous hydrophobic membrane to create a large interface between the waste gas and the aqueous phase. To test the new reactor, propene was chosen because of its high air/water partition coefficient, which causes a low water concentration and hampers its removal from air. Propene transfer from air to a suspension of propene-utilizing Xanthobacter Py2 cells in the membrane bioreactor proved to be controlled by mass transfer in the liquid phase. The resistance of the membrane was negligible. Simulated propene transfer rates agreed well with the experimental data. A stable biofilm of Xanthobacter Py2 developed on the membrane during prolonged operation. The propene flux into the biofilm was 1 × 10-6 mol m-2 s-1 at a propene concentration of 9.3 × 10-2 mol m-3 in the gas phase. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 334-346 
    ISSN: 0006-3592
    Keywords: mammalian cells ; glycolysis ; glutarninolysis ; regulation ; kinetic model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (QGlc) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (qGlc7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas qGlc is affected by glutamine, qGln appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.© 1995 John Wiley & Sons, Inc
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...