ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (8)
  • SPACE TRANSPORTATION  (8)
  • LUNAR AND PLANETARY EXPLORATION  (3)
  • 1990-1994  (19)
  • 1994  (19)
Collection
Years
  • 1990-1994  (19)
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The 21st century is likely to see the start of the manned exploration and settlement of the inner solar system. NASA's plans for this endeavor are focused upon the Space Exploration Initiative which calls for a return to the Moon, to stay, followed by manned missions to Mars. To execute these missions safely provides solar physics with both a challenge and an opportunity. As the past solar maximum has clearly demonstrated, the Sun, through the solar flare process, is capable of generating and accelerating to high energies large fluxes of protons whose cumulative dose to unprotected astronauts can be fatal. It will be the responsibility of solar physicists to develop an accurate physical description of the mechanisms of flare energy storage and release, and of particle acceleration and propagation through interplanetary space upon which to base a sound method of flare and energetic particle prediction.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Advances in Space Research (ISSN 0273-1177); 14; 6; p. (6)33-(6)42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: We present an analysis of a cusp ion step observed between two poleward-moving events of enhanced ionospheric electron temperature. From the computed variation of the reconnection rate and the onset times of the associated ionospheric events, the distance between the satellite and the X-line can be estimated, but with a large uncertainty due to that in the determination of the low-energy cut-off of the ion velocity distribution function, f(E). Nevertheless, analysis of the time series f(t) shows the reconnection site to be on the dayside magnetopause, consistent with the pulsating cusp model, and the best estimate of the X-line location is 13 R(E) from the satellite. The ion precipitation is used to reconstruct the field-parallel part of the Cowley-D ion distribution function injected into the open low latitude boundary layer (LLBL) in the vicinity of the X-line. From this the Alfven speed, plasma density, magnetic field, parallel ion temperature, and flow velocity of the magnetosheath near the X-line can be derived.
    Keywords: GEOPHYSICS
    Type: NASA-TM-110114 , NAS 1.15:110114 , PB95-129805 , RAL-94-081
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-61. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/TPS conditions and integrated photographic analysis of shuttle mission STS-61, and the resulting effect on the space shuttle program.
    Keywords: SPACE TRANSPORTATION
    Type: NASA-TM-109195 , NAS 1.15:109195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program.
    Keywords: SPACE TRANSPORTATION
    Type: NASA-TM-109205 , NAS 1.15:109205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Using a spherically symmetric, self-gravitating, linear viscoelastic Earth model, we predict present-day three-dimensional surface deformation rates and baseline evolutions arising as a consequence of the late Pleistocene glacial cycles. In general, we use realistic models for the space-time geometry of the final late Pleistocene deglaciation event and incorporate a gravitationally self-consistent ocean meltwater redistribution. The predictions of horizontal velocity presented differ significantly, in both their amplitude and their spatial variation, from those presented in earlier analysis of others which adopted simplified models of both the late Pleistocene ice history and the Earth rheology. An important characteristic of our predicted velocity fields is that the melting of the Laurentide ice sheet over Canada is capable of contributing appreciably to the adjustment in Europe. The sensitivity of the predictions to variations in mantle rheology is investigated by considering a number of different Earth models, and by computing appropriate Frechet kernels. These calculations suggest that the sensitivity of the deformations to the Earth's rheology is significant and strongly dependent on the location of the site relative to the ancient ice sheet. The effects on the predictions of three-dimensional deformation rates of altering the ice history or adopting approximate models for the ocean meltwater redistribution have also been considered and found to be important (the former especially so). Finally, for a suite of Earth models we provide predictions of the velocity of a number of baselines in North America and Europe. We find that, in general, both radial and tangential motions contribute significantly to baseline length changes, and that these contributions are a strong function of the Earth model. We have, furthermore, found a set of Earth models which, together with the ICE-3G deglaciation chronology, produce predictions of baseline length changes that are consistent with very long baseline interferometry measurements of baselines within Europe.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B4; p. 7075-7101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean adjustment associated with the total gravitational perturbation induced by the external forcing. Three-dimensional deformations computed using the usual Love number approach are generally referenced to an origin at the center of mass of the undeformed planet. We derive a spectral technique for transforming the results to an origin located at the center of mass of the deformed planet.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B4; p. 7057-7073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We use over a decade of geodetic Very Long Baseline Interferometry (VLBI) data to estimate parameters in a resonance expansion of the frequency dependence of the tidal h(sub 2) Love number within the diurnal band. The resonance is associated with the retrograde free core nutation (RFCN). We obtain a value for the real part of the resonance strength of (-0.27 +/- 0.03) x 10(exp -3); a value of -0.19 x 10(exp -3) is predicted theoretically. Uncertainties in the VLBI estimates of the body tide radial displacement amplitudes are approximately 0.5 mm (1.1 mm for the K1 frequency), but they do not yield sufficiently small Love number uncertainties for placing useful constraints on the frequency of the RFCN, given the much smaller uncertainties obtained from independent analyses using nutation or gravimetric data. We also consider the imaginary part of the tidal h(sub 2) Love number. The estimated imaginary part of the resonance strength is (0.00 +/- 0.02) x 10(exp -3). The estimated imaginary part of the nonresonant component of the Love number implies a phase angle in the diurnal tidal response of the Earth of 0.7 deg +/- 0.5 deg (lag).
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 8; p. 705-708
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A pre-launch debris inspection of the pad and Shuttle vehicle was conducted on 2 March 1994. The detailed walkdown of Launch Pad 39B and MLP-1 also included the primary flight elements OV-102 Columbia (16th flight), ET-62 (LWT 55), and BI-064 SRB's. There were no significant facility or vehicle anomalies. After the launch on March 4th, a debris inspection of Pad 39B was performed. Damage to the pad overall was minimal. On-orbit photographs taken by the flight crew and two films from the ET/ORB umbilical cameras of the External Tank after separation from the Orbiter revealed no major damage or lost flight hardware that would have been a safety of flight concern. Orbiter performance on final approach appeared normal. Infrared imagery of landing gear deployment showed the loss of thermal barrier from the nose gear wheel well. The missing thermal barrier material was not recovered. The Solid Rocket Boosters were inspected at Hanger AF after retrieval. Both frustums had a combined total of 44 MSA-2 debonds over fasteners. Significant amounts of BTA had been applied to closeouts on the RH frustum, forward skirt, and aft skirt. Hypalon paint was blistered/missing over the areas were the BTA had been applied. The underlying BTA was not sooted (IFA STS-62-B-1). Investigation of this condition has concluded there was insufficient heat rates to cause blistering of the Hypalon until late in the ascent phase. A post landing inspection of OV-102 was conducted after the landing at KSC. The Orbiter TPS sustained a total of 97 hits, of which 16 had a major dimension of 1 inch or larger. The Orbiter lower surface had a total of 36 hits, of which 7 had a major dimension of 1 inch or larger. Based on these numbers and comparison to statistics from previous missions of similar configuration, both the total number of debris hits and the number of hits 1 inch or larger was less than average. Six thermal barriers, total size approximately 36 in. x 3 in. x 1.5 in., and one corner tile piece 4 in. x 4 in., were missing from the nose landing gear doors. Runway infrared cameras recorded these objects falling from the Orbiter when the nose landing gear doors were opened on final approach. A search of the area under the flight path failed to recover the missing thermal batteries, which may be submerged in the large body of water south of the runway. The cause for the loss of the material was attributed to the way the substrate was prepared for bonding at the vendor. Orbiter post landing microchemical sample results revealed a variety of residuals in the Orbiter window samples. These were attributed to SRB BSM exhaust, Orbiter TPS, window protective covers and processing, natural landing site products, and paints/primers from various sources. The residual sampling data do not indicate a single source of damaging debris and all of these materials have been documented previously in analyses for post landing sample reports. Data from residual sampling also showed no trends when compared to previous mission data. A total of ten Post Launch Anomalies, including one IFA, were observed during the STS-62 mission assessment.
    Keywords: SPACE TRANSPORTATION
    Type: NASA-TM-109201 , NAS 1.15:109201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Analysis of Global Positioning System (GPS) data from two sites separated by horizontal distance of only approximately 2.2 m yielded phase residuals exhibiting a systematic elevation angle dependence. One of the two GPS antennas was mounted on an approximately 1 m high concrete pillar, and the other was mounted on a standard wooden tripod. We performed elevation angle cutoff tests with these data, and established that the vertical coordinate of site position was sensitive to the minimum elevation angle (elevation cutoff) of the data analyzed. For example, the vertical coordinate of site position changed by 9.7 plus or minus 0.8 mm when the minimum elevation angle was increased from 10 to 25. We performed simulations based on a simple (ray tracing) multipath model with a single horizontal reflector, and demonstrated that the elevation angle cutoff test results and the pattern of the residual versus elevation angle could be qualitatively reproduced if the reflector were located 0.1-0.2 m beneath the antenna phase center. We therefore, hypothesized that the source of the elevation-angle-dependent error were multipath reflections and scattering and that the horizontal surface of the pillar, located a distance of approximately 0.2 m beneath the antenna phase center, was the primary reflector. We tested this hypothesis by placing microwave absorbing material between the antenna and the pillar in a number of configurations and analyzed the changes in apparent position of the antenna. The results indicate that (1) the horizontal surface of the pillar is indeed the main reflector, (2) both the concrete and the metal plate embedded in the pillar are significant reflectors, and (3) the reflection can be reduced to a great degree by the use of microwave absorbing materials. These results have significant implications for the accuracy of global GPS geodetic tracking networks which use pillar-antenna configuration identical or similar to the one used here (at the Westford WFRD GPS site).
    Keywords: GEOPHYSICS
    Type: NASA-CR-196440 , NAS 1.26:196440
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This project involves obtaining GPS measurements in Scandinavia and using the measurements to estimate the viscosity profile of the earth's mantle and to correct tide-gauge measurements for the rebound effect. We report on several aspects of this project. The DSGS was not scheduled to be reoccupied with DOSE receivers during the report period. The permanent network set up by Onsala Space Observatory continues to operate, and the data are being evaluated. An important technical advance we intend for this project is to use the full three dimensional site velocity information for inferring geophysical parameters. During the report period, two papers have been been accepted for publication in the Journal of Geophysical Research and will be published in April. Reprints of these papers are contained in the Appendix.
    Keywords: GEOPHYSICS
    Type: NASA-CR-196300 , NAS 1.26:196300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...