ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMEE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets. The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: (1) collection of observational data; (2) analysis and interpretation; (3) interpolation using the Optimum Thermal Interpolation System package; (4) quality control and re-analysis; and (5) data archiving and software documentation. The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement. Suggestions for DAMEE data usages include (1) ocean modeling and data assimilation studies, (2) diagnosis and theoretical studies, and (3) comparisons with locally detailed observations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Bulletin of the American Meteorological Society (ISSN 0003-0007); p. 793-809
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The Arctic Boundary Layer Expedition (ABLE) 3B was conducted to determine the summertime tropospheric distribution, sources, and sinks of important trace gas and aerosol species over the wetlands and boreal forests of central and eastern Canada. Isentropic trajectories and analyzed midtropospheric circulation patterns were used to group flights according to the transport histories of polar, midlatitude, or tropical air masses which were sampled. These data were then divided into bands of potential temperature levels representing the low, middle, and maximum aircraft altitudes to assess the effects of both local and long distance transport and natural and man-made pollutants to the measured chemical species. Detailed case studies are provided to depict the complex three-dimensional airflow regimes that transported air with differing chemical signatures to the study area. Mission 6 details the large-scale movement of smoke in the generally prevailing west to northwesterly airflow that was observed on the majority of flights. Mission 1 analyzes the horizontal and vertical motions of maritime Pacific air in the upper troposphere that was routinely mixed downward to the aircraft altitude. Finally, mission 14 tracks the far northward excursion of tropical air that had been associated with a Pacific typhoon. The following three factors all had important influences on the collected chemical data sets: (1) local and distant stratospheric in puts into the upper and middle troposphere; (2) biomass-burning plumes from active fires in Alaska and Canada; (3) a band of 'low ozone' upper tropospheric air that was observed by airborne differential absorption lidar (DIAL) above the aircraft maximum altitude. Other modification factors observed on some flights included urban pollution from U.S. and Canadian cities, tropical air that had been associated with a Pacific typhoon, and precipitation scavenging by clouds and rain. Many flights were affected by several of the above factors which led to complex chemical signatures that will be discussed in other companion papers.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1645-1657
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1927-1936
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 75; 6; p. 975-982
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-27
    Description: The Arctic Boundary Layer Expedition (ABLE) 3B was conducted over the northern wetlands region of Canada during July and August 1990. Several stratospheric/tropospheric exchange events were noted by zenith-looking airborne lidar and in situ measurements of ozone and other trace gas species. Isentropic trajectories and potential vorticity analyses are utilized to determine the frequency of stratospheric inputs which would have affected the tropospheric column over the Moosonee and Schefferville regions and to describe the favored pathways of transport of stratospheric air arriving at these locations. At the 310 K potential temperature level (middle troposphere), trajectories having 'aged stratospheric' values of potential vorticity at some point in their 5-day history arrived at Moosonee or Schefferville roughly 40% of the time during the ABLE 3B study period, most often via large-scale subsidence enroute from 'stratospheric input regions' over the Arctic Ocean or northern and central Canada. At 325 K (upper troposphere), 'fresh' stratospheric input was evident on about 80% of the trajectories, most often associated with jet streaks within the polar and Arctic jet streams. A case study is presented which illustrates both of these general stratospheric input processes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1793-1804
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...