ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Mass loss on the horizontal branch has been invoked in the literature to explain such phenomena as the color (mass) dispersion of the horizontal branch and the observed distribution of period changes in RR Lyrae stars. To test these claims, the Yale stellar evolution code was used to evolve horizontal branch models of masses 0.64, 0.66, 0.68, 0.70, and 0.72 solar mass with Z of 0.001, core mass of 0.4893, main-sequence helium abundance of 0.23, and constant mass loss rates of 0, 10(exp -10), 5 x 10(exp -10), and 10(exp -9) solar mass/yr. Mass loss was assumed to occur only in the instability strip, where a mechanism is most likely to exist. Synthetic horizontal branches, constructed from the models, show that mass loss on the horizontal branch cannot produce the observed color dispersion even for the highest mass-loss rate of 10(exp -9) solar mass/yr. Mass loss is unlikely to occur at a higher rate without significant effects on the horizontal branch morphology, which would destroy the good agreement between standard synthetic models without mass loss and observed horizontal branches. Periods and period changes were calculated for all models. The period changes are not significantly larger for models with mass loss. The effect of mass loss in clusters of other metallicities is discussed.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 423; 1; p. 380-385
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: New measurements of the reduction of the V-band surface brightness across the prominent dust feature in the galaxy NGC 4826 are compared with corresponding increases in the V-K' color within the context of radiative transfer models invoking both absorption and scattering. The K'-band surface brightness is found to be higher than expected from standard dust models. We interpret the difference as resulting from a high effective dust albedo at K', with a likely value in excess of 0.8, provided the near-IR extinction curve in NGC 4826 is identical to the Galactic one. The high effective albedo may result from scattering by dust with a maximum grain size at least twice as large as assumed by standard models, a conclusion already indirectly hinted at by recent studies of dust star-forming regions and reflection nebulae. At least part of the high effective albedo at K' may result from near-IR nonequilibrium continuum emission attributable to very small grains.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 427; 1; p. 227-231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...