ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (3)
  • Aerospace Medicine
  • Lunar and Planetary Science and Exploration
  • Mice
  • 2005-2009
  • 1990-1994  (7)
  • 1994  (7)
  • 1
    Publication Date: 1994-12-09
    Description: Growth factors activate mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs) and Jun kinases (JNKs). Although the signaling cascade from growth factor receptors to ERKs is relatively well understood, the pathway leading to JNK activation is more obscure. Activation of JNK by epidermal growth factor (EGF) or nerve growth factor (NGF) was dependent on H-Ras activation, whereas JNK activation by tumor necrosis factor alpha (TNF-alpha) was Ras-independent. Ras activates two protein kinases, Raf-1 and MEK (MAPK, or ERK, kinase) kinase (MEKK). Raf-1 contributes directly to ERK activation but not to JNK activation, whereas MEKK participated in JNK activation but caused ERK activation only after overexpression. These results demonstrate the existence of two distinct Ras-dependent MAPK cascades--one initiated by Raf-1 leading to ERK activation, and the other initiated by MEKK leading to JNK activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minden, A -- Lin, A -- McMahon, M -- Lange-Carter, C -- Derijard, B -- Davis, R J -- Johnson, G L -- Karin, M -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1719-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla 92093-0636.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992057" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Enzyme Activation/drug effects ; Epidermal Growth Factor/pharmacology ; Genes, ras ; HeLa Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; *MAP Kinase Kinase Kinase 1 ; Mice ; Mitogen-Activated Protein Kinase 1 ; *Mitogen-Activated Protein Kinases ; Nerve Growth Factors/pharmacology ; PC12 Cells ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Rats ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; ras Proteins/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-05-06
    Description: Microtubule dynamic instability underlies many cellular functions, including spindle morphogenesis and chromosome movement. The role of guanosine triphosphate (GTP) hydrolysis in dynamic instability was investigated by introduction of four mutations into yeast beta-tubulin at amino acids 103 to 109, a site thought to participate in GTP hydrolysis. Three of the mutations increased both the assembly-dependent rate of GTP hydrolysis and the average length of steady-state microtubules over time, a measure of dynamic instability. The fourth mutation did not substantially affect the rate of GTP hydrolysis or the steady-state microtubule lengths. These results demonstrate that the rate of GTP hydrolysis can modulate microtubule length and hence dynamic instability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, A -- Sage, C R -- Dougherty, C A -- Farrell, K W -- GM 41751/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 May 6;264(5160):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of California, Santa Barbara 93106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8171338" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; GTP Phosphohydrolases/*metabolism ; Guanosine Triphosphate/*metabolism ; Hydrolysis ; Microtubules/metabolism/*physiology/ultrastructure ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Saccharomyces cerevisiae/chemistry ; Tubulin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-11-04
    Description: The EPH-related transmembrane tyrosine kinases constitute the largest known family of receptor-like tyrosine kinases, with many members displaying specific patterns of expression in the developing and adult nervous system. A family of cell surface-bound ligands exhibiting distinct, but overlapping, specificities for these EPH-related kinases was identified. These ligands were unable to act as conventional soluble factors. However, they did function when presented in membrane-bound form, suggesting that they require direct cell-to-cell contact to activate their receptors. Membrane attachment may serve to facilitate ligand dimerization or aggregation, because antibody-mediated clustering activated previously inactive soluble forms of these ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Gale, N W -- Aldrich, T H -- Maisonpierre, P C -- Lhotak, V -- Pawson, T -- Goldfarb, M -- Yancopoulos, G D -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):816-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/*metabolism ; *DNA-Binding Proteins ; Ephrin-A1 ; Ephrin-B1 ; Humans ; Ligands ; Membrane Proteins/chemistry/*metabolism ; Molecular Sequence Data ; Neurons/metabolism ; Phosphorylation ; Proteins/chemistry/*metabolism ; *Proto-Oncogene Proteins ; Receptor Protein-Tyrosine Kinases/*metabolism ; *Receptor, EphA5 ; Recombinant Fusion Proteins/metabolism ; Retroviridae Proteins, Oncogenic/*metabolism ; Solubility ; *Transcription Factors ; Transfection ; Tumor Cells, Cultured ; ets-Domain Protein Elk-1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: The osmotic balance between the cytoplasmic and extracellular compartments of cells is critical for the control of cell volume. A mammalian protein kinase, Jnk, which is a distant relative of the mitogen-activated protein kinase group, was activated by phosphorylation on threonine and tyrosine in osmotically shocked cells. The activation of Jnk may be relevant to the biological response to osmotic shock because the expression of human Jnk in the yeast Saccharomyces cerevisiae rescued a defect in growth on hyper-osmolar media. These data indicate that related protein kinases may mediate osmosensing signal transduction in yeast and mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Derijard, B -- Wu, I H -- Davis, R J -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):806-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047888" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium-Calmodulin-Dependent Protein Kinases/genetics ; Cricetinae ; Cricetulus ; Enzyme Activation ; Genetic Complementation Test ; JNK Mitogen-Activated Protein Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Osmotic Pressure ; Protein-Serine-Threonine Kinases/*physiology ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; Signal Transduction/*physiology ; Water-Electrolyte Balance/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: A variety of low-cost space missions planned by NASA for flight in the late 1990's and early 2000's will involve rendevous with, and orbits about, small solar-system bodies such as asteroids and comets.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Despite technical problems associated with designing a rotating space station it is still thought that such a device may provide a more tolerable work environment and prevent some of the physiological changes that currently pose a threat to long-duration space missions. In the present analysis four case studies are presented and the results show that centrifugal and Coriolis effects could hinder one's ability to walk or run in a natural way in such an environment. In a rotating station that has a nominal 'G-level' equal to that on earth it can be shown that a person running at 3.8 m s -1 could experience foot 'heaviness' effects that range from 1 to 3 g and fore-aft foot 'forces' that range fom -0.5 to +0.5 g. In contrast the hip region could sense a relatively constant 'force' equal to 2 g. With regard to the body as a whole there would be 'weight changes' that depended on the direction of gait. While these conditions imply that locomotion in a rotating space station would be different from normal gait, it is likely that given sufficient training, astronauts could learn optimal strategies to account for centrifugal and Coriolis effects on individual body segments. The learning process would also entail developing strategies on which route to take when moving from one location to another, since in many cases the shortest route would not be the least energy consuming. Such training would be justified if it were shown that artificial gravity was an effective countermeasure to the problems of muscle atrophy and bone loss.
    Keywords: Aerospace Medicine
    Type: Gait & posture (ISSN 0966-6362); 2; 157-65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...