ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • 2005-2009
  • 2000-2004
  • 1990-1994  (1)
  • 1994  (1)
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of intracellular pH (pHin) in the regulation of cell growth in both normal and transformed cells is a topic of considerable controversy. In an effort to study this relationship NIH 3T3 cells were stably transfected with the gene for the yeast H+-ATPase, constitutively elevating their pHin. The resulting cell line, RN1a, has a transformed phenotype: The cells are serum independent for growth, clone in soft agar, and form tumors in nude mice. In the present study, we further characterize this system in order to understand how transfection with this proton pump leads to serum-independent growth, using defined media to investigate the effects of specific growth factors on the transfected and parental NIH 3T3 cells. While both cell lines show similar growth increases in response to platelet-derived growth factor (PDGF)-BB and epidermal growth factor (EGF), they respond differently to insulin, insulin-like growth factor-I (IGF-I) and PDGF-AA. RN1a cells exhibit increased growth at nanomolar concentrations of insulin but the parental cells had only a relatively minor response to insulin at 10 μM. Both cell lines showed some response to IGF-I in the nanomolar range but the response of RN1a cells was much larger. Differences in insulin and IGF-I receptor number alone could not explain these results. The two cell lines also respond differently to PDGF-AA. RN1a cells are relatively insensitive to stimulation by PDGF-AA and express fewer PDGF α receptors as shown by Northern blots and receptor-binding studies. We propose a unifying hypothesis in which the H+-ATPase activates a downstream element in the PDGF-AA signal transduction pathway that complements insulin and IGF-I signals, while leading to downregulation of the PDGF α receptor. © 1994 wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...