ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (2)
  • drug release  (1)
  • 2015-2019
  • 1990-1994  (3)
  • 1994  (3)
  • 1
    Publication Date: 2019-08-17
    Description: In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained through sunrise and sunset in the lower stratosphere during SPADE are compared to results from a photochemical model constrained by observed concentrations of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N205 on sulfate aerosols agree with measured concentrations of NO, NO2, and ClO throughout the day, but fail to account for high concentrations of OH and H02 observed near sunrise and sunset. The morning burst of [OH] and [HO2] coincides with the rise of [NO] from photolysis of N02, suggesting a new source of HO, that photolyzes in the near UV (350 to 400 nm) spectral region. A model that allows for the heterogeneous production of HN02 results in an excellent simulation of the diurnal variations of [OH] and [HO2].
    Keywords: Geophysics
    Type: NASA-CR-204900 , Paper-94-GL-02782 , NAS 1.26:204900 , Geophysical Research Letters (ISSN 0094-8534); 21; 23; 2551-2554
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained in the lower stratosphere during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) are compared to results from a photochemical model that assimilates measurements of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N2O5 agree well with measured concentrations of NO and ClO, but concentrations of HO2 and OH are underestimated by 10 to 25%, concentrations of NO2 are overestimated by 10 to 30%, and concentrations of HCl are overestimated by a factor of 2. Discrepancies for [OH] and [HO2] are reduced if we allow for higher yields of O(sup 1)D) from 03 photolysis and for heterogeneous production of HNO2. The data suggest more efficient catalytic removal of O3 by hydrogen and halogen radicals relative to nitrogen oxide radicals than predicted by models using recommended rates and cross sections. Increases in [O3] in the lower stratosphere may be larger in response to inputs of NO(sub y) from supersonic aircraft than estimated by current assessment models.
    Keywords: Geophysics
    Type: NASA-CR-204901 , Paper-94GL02781 , NAS 1.26:204901 , Geophysical Research Letters (ISSN 0094-8534); 21; 23; 2547-2550
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 1271-1281 
    ISSN: 0887-624X
    Keywords: L-lysine ; poly(ether urethane) ; photocrosslinked ; poly(ethylene glycol) ; hydrogel (s) ; drug release ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A group of new, water-soluble poly(ether-urethane)s, derived from poly(ethylene glycol) and the amino acid L-lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. the crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64-88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1M, pH 7.4, 37°C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly(ethylene glycol)-lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful properties. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...