ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Aerospace Medicine  (5)
  • MECHANICS  (4)
  • Spacecraft Design, Testing and Performance
  • 2005-2009  (7)
  • 1990-1994  (5)
  • 1955-1959
  • 2007  (7)
  • 1994  (5)
Sammlung
Erscheinungszeitraum
  • 2005-2009  (7)
  • 1990-1994  (5)
  • 1955-1959
Jahr
  • 1
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2018-06-06
    Beschreibung: This viewgraph presentation gives a general overview of the X-43A program. The contents include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; and 5) Flight 3 and Results.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2018-06-06
    Beschreibung: A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-06-11
    Beschreibung: Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.
    Schlagwort(e): Aerospace Medicine
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-19
    Beschreibung: Dr. Davis' presentation includes a brief overview of space flight and the lessons learned for health care in microgravity. He will describe the development of policy for health care for international crews. He will conclude his remarks with a discussion of an integrated health care system.
    Schlagwort(e): Aerospace Medicine
    Materialart: Digital Health Conference: Integrated Health Care; Oct 10, 2006 - Oct 11, 2006; Baltimore, MD; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: 54th Joint JANNAF Propulsion Meeting; May 14, 2007 - May 17, 2007; Denver, Co; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: Despite technical problems associated with designing a rotating space station it is still thought that such a device may provide a more tolerable work environment and prevent some of the physiological changes that currently pose a threat to long-duration space missions. In the present analysis four case studies are presented and the results show that centrifugal and Coriolis effects could hinder one's ability to walk or run in a natural way in such an environment. In a rotating station that has a nominal 'G-level' equal to that on earth it can be shown that a person running at 3.8 m s -1 could experience foot 'heaviness' effects that range from 1 to 3 g and fore-aft foot 'forces' that range fom -0.5 to +0.5 g. In contrast the hip region could sense a relatively constant 'force' equal to 2 g. With regard to the body as a whole there would be 'weight changes' that depended on the direction of gait. While these conditions imply that locomotion in a rotating space station would be different from normal gait, it is likely that given sufficient training, astronauts could learn optimal strategies to account for centrifugal and Coriolis effects on individual body segments. The learning process would also entail developing strategies on which route to take when moving from one location to another, since in many cases the shortest route would not be the least energy consuming. Such training would be justified if it were shown that artificial gravity was an effective countermeasure to the problems of muscle atrophy and bone loss.
    Schlagwort(e): Aerospace Medicine
    Materialart: Gait & posture (ISSN 0966-6362); 2; 157-65
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-13
    Beschreibung: Wiper mechanism devised to remove accumulated powder from viewport of vacuum-plasma-spraying chamber. Major part of mechanism is wiper-arm assembly. Wiper replaceable cloth strip attached to rectangular bar. Left end of wiper-arm assembly attached to vacuum-tight motion-feedthrough joint mounted on wall of chamber. Wiper operated manually by use of joint.
    Schlagwort(e): MECHANICS
    Materialart: MFS-29898 , NASA Tech Briefs (ISSN 0145-319X); 18; 5; P. 85
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.
    Schlagwort(e): Aerospace Medicine
    Materialart: GSBS Committee for Career Development; Apr 27, 2007; Galveston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-12
    Beschreibung: Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses to and the operational environment of short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware that will be used for long-duration lunar surface operations.Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.
    Schlagwort(e): Aerospace Medicine
    Materialart: NASA/TM-2007-214755 , S-1005
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-13
    Beschreibung: NASA technical memorandum describes experiments and analysis of experimental data pertaining to subsonic, turbulent flow of air in duct that includes gradual transition from circular cross section at inlet to rectangular cross section at outlet. Study intended to support further research on physics of flow, by providing comprehensive set of data for calibration and verification of computer codes for simulation of transition-duct flows and mathematical models of turbulence in flows in which effects of curvature of streamlines important.
    Schlagwort(e): MECHANICS
    Materialart: LEW-15682 , NASA Tech Briefs (ISSN 0145-319X); 18; 5; P. 95
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...