ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OPTICS  (10)
  • SPACECRAFT PROPULSION AND POWER  (5)
  • 1990-1994  (15)
  • 1975-1979
  • 1993  (15)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.
    Keywords: OPTICS
    Type: The Second International Workshop on Squeezed States and Uncertainty Relations; p 341-355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: New methods have been developed for the design of a far ultraviolet multilayer reflection polarizer and retarder. A MgF2/Al/MgF2 three-layer structure deposited on a thick opaque Al film (substrate) is used for the design of polarizers and retarders. The induced transmission and absorption method is used for the design of a polarizer and layer-by-layer electric field calculation method is used for the design of a quarterwave retarder. In order to fabricate these designs in a conventional high vacuum chamber, we have to minimize the oxidation of the Al layers and somehow characterize the oxidized layer. X-ray photoelectron spectroscopy is used to investigate the amount and profile of oxidation. Depth profiling results and a seven layer oxidation model are presented.
    Keywords: OPTICS
    Type: NASA-CR-194630 , NAS 1.26:194630
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.
    Keywords: OPTICS
    Type: NASA-CR-194631 , NAS 1.26:194631
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.
    Keywords: OPTICS
    Type: NASA-CR-194635 , NAS 1.26:194635
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: In certain cases a space-borne optical instrument with a dielectric window requires a transparent conductive coating deposited on the window to remove the electrostatic charge collected due to the bombardment of ionized particles. Semiconductor and metal films are studied for use as transparent conductive coatings for the front window of far ultraviolet camera. Cr is found to be the best coating material. The theoretical search for the semiconductor and metal coating materials and experimental results for ITO and Cr films are reported.
    Keywords: OPTICS
    Type: NASA-CR-194632 , NAS 1.26:194632
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The far ultraviolet (FUV) imager for the International Solar Terrestrial Physics (ISTP) mission is designed to image four features of the aurora: O I lines at 130.4 nm and 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) bands between 140 nm - 160 nm (LBH long) and 160 nm - 180 nm (LBH long). In this paper we report the design and fabrication of narrow-band and broadband filters for the ISTP FUV imager. Narrow-band filters designed and fabricated for the O I lines have a bandwidth of less than 5 nm and a peak transmittance of 23.9 percent and 38.3 percent at 130.4 nm and 135.6 nm, respectively. Broadband filters designed and fabricated for LBH bands have the transmittance close to 60 percent. Blocking of out-of-band wavelengths for all filters is better than 5x10(exp -3) percent with the transmittance at 121.6 nm of less than 10(exp -6) percent.
    Keywords: OPTICS
    Type: NASA-CR-194633 , NAS 1.26:194633
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: At short wavelengths, such as FUV, transparent, optically active materials are scarce. Reflection phase retardation by a multilayer thin film can be a good alternative in this wavelength region. We design a multilayer quarterwave retarder by calculating the electric fields at each boundary in the multilayer thin film. Using this method, we achieve designs of FUV multilayers which provide high, matched reflectances for both s- and p-polarization states, and at the same time a phase difference between these two states of nearly 90 deg. For example, a quarterwave retarder designed at the Lyman-alpha line (121.6 nm) has 81.05 percent reflectance for the s-polarization and 81.04 percent for the p-polarization state. The phase difference between these two polarization states is 90.07 deg. For convenience the retarders are designed for 45 deg angle of incidence, but our design approach can be used for any other angle of incidence. Aluminum and MgF2 are used as film materials and an opaque thick film of aluminum as the substrate.
    Keywords: OPTICS
    Type: In: Multilayer and grazing incidence X-ray(EUV optics for astronomy and projection lithography; Proceedings of the Meeting, San Diego, CA, July 19-22, 1992 (A93-39601 15-74); p. 403-412.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The flowfields and performance of nuclear thermal rockets, which utilize radiation and film-cooling to cool the nozzle extension, are studied by solving the Navier-Stokes equations and species equations. The thrust level of the rocket for the present study is about 75,000 lb(f) for a chamber pressure of 68 atm(l,000 psi) and a chamber temperature of 2700 K. The throat radius of the nozzle is 0.0936 m and the area ratios of the nozzles are 300 and 500. It is assumed that the flow is chemically frozen and the turbulence is simulated by the modified Baldwin-Lomax turbulence model. The calculated results for various area ratios and film mass-flow rates are presented as Mach number contours, variations of nozzle wall temperature, exit profiles, and vacuum specific impulses. The present study shows that by selecting the flow rate of the film-cooling hydrogen and area ratio of the nozzle correctly, high area ratio nozzle extensions can be cooled effectively with radiation and film-cooling without significant penalty in performance.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 93-2498 , ; 12 p.|AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit; Jun 28, 1993 - Jun 30, 1993; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The structure of the flow around a nuclear thermal rocket nozzle lip has been investigated using the direct simulation Monte Carlo method. Special attention has been paid to the behavior of a small amount of harmful particles that may be present in the rocket exhaust gas. The harmful fission product particles are modeled by four inert gases whose molecular weights are in a range of 4 131. Atomic hydrogen, which exists in the flow due to the extremely high nuclear fuel temperature in the reactor, is also included. It is shown that the plume backflow is primarily determined by the thin subsonic fluid layer adjacent to the surface of the nozzle lip, and that the inflow boundary in the plume region has negligible effect on the backflow. It is also shown that a relatively large amount of the lighter species is scattered into the backflow region while the amount of the heavier species becomes negligible in this region due to extreme separation between the species. Results indicate that the backscattered molecules are very energetic and are fast-moving along the surface in the backflow region near the nozzle lip.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 93-2497 , AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit; Jun 28, 1993 - Jun 30, 1993; Monterey, CA; United States|; 10 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A gas generator which can be ignited reliably during the initial start-up period and offers fairly uniform gas temperature at the exit was studied numerically. Various sizes and shapes of the mixing enhancement devices and their positions were examined to evaluate the uniformity of the exit gas temperature and the change of internal pressure drop incurred by introducing the mixing enhancement devices. By introducing a turbulence ring and a splash plate with an appropriate size and position, it was possible to obtain fairly uniform gas temperature distributions and a maximum gas temperature that is within the design limit temperature of 1600 R at the generator exit. However, with the geometry studied, the pressure drop across the generator was great, approximately 1150 psi, to satisfy the assigned design limit temperature. If the design limit temperature is increased to 1650 R, the pressure drop across the generator could be lowered by as much as 350 psi.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 93-2158 , ; 9 p.|AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit; Jun 28, 1993 - Jun 30, 1993; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...