ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1993-01-01
    Description: We have examined the effects of recombinant human interleukin-11 (rhIL- 11) on the recovery of peripheral blood cell counts and proliferation of progenitors and hematopoietic stem cells (day 12 colony-forming units-spleen-CFU-S12) in vivo using a mouse bone marrow (BM) and spleen cell transplantation model. Recovery of leukocytes was accelerated in animals receiving daily administration of rhIL-11 (100 micrograms/kg/d) and reached normal levels by day 14 posttransplantation. This increased total leukocyte count reflected mainly an increase in neutrophils. Neutropenia (absolute neutrophil count [ANC] 〈 1,500) was present in control transplant mice for 14 to 15 days, while in the rhIL-11-treated group, neutrophils recovered to normal by days 8 to 10 and continued to increase until day 19. Animals treated with rhIL-11 had only 1 day with ANC demonstrated 〈 500. Correspondingly, rhIL-11 treatment increased granulocyte-macrophage progenitors (CFU-GM) derived from both spleen and BM cells. Higher doses of IL-11 increased CFU-GM nearly threefold and CFU-Mix fourfold to fivefold, while increasing burst-forming units- erythroid to a lesser degree. BM and spleen cellularity were both increased in IL-11-treated mice, but no increase in CFU-S12 was noted. In addition, in vivo daily administration of IL-11 increased peripheral platelet counts by threefold over control transplant mice at day 10 posttransplantation during the post-irradiation platelet nadir. Further treatment led to platelet counts higher than normal 18 days posttransplantation when control animals had just attained normal platelet counts. IL-11 can accelerate the recovery of the peripheral blood leukocytes, mainly neutrophils, and platelets in transplant mice, effects that may be clinically useful in future applications for BM transplantation and chemotherapy-related cytopenias.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-09-01
    Description: Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-07-15
    Description: Murine high proliferative potential colony-forming cells (HPP-CFC) are known to be heterogenous with respect to proliferative capacity and in vitro responsiveness to hematopoietic growth factors. We have separated HPP-CFC into several subpopulations using counterflow centrifugal elutriation. Although HPP-CFC were identified in all of the elutriated fractions of both C3H/HeJ and C57BI/6J bone marrow cells, the distribution of HPP-CFC as well as of colony-forming units-granulocyte- macrophage (CFU-GM) in each fraction differed between these two strains of inbred mice. Six subsets of HPP-CFC were resolved that differed in growth factor responsiveness. A low-density HPP-CFC subpopulation was isolated that was distinct from day-12 spleen colony-forming units (CFU- S12), CFU-GM, and bone marrow stromal cells. This unique subpopulation of HPP-CFC is rate (3% to 9% of total HPP-CFC), appears to be lymphocyte-like in morphology, and behaves the most primitive of the HPP-CFC subsets by requiring multiple hematopoietic growth factors for optimal in vitro cloning. Further characterization of this subpopulation of HPP-CFC will determine the position of these cells in the HPP-CFC heirarchy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-09-01
    Description: Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-04-15
    Description: The underlying DNA changes associated with glucose-6-phosphate dehydrogenase (G6PD)-deficient Asians have not been extensively investigated. To fill this gap, we sequenced the G6PD gene of 43 G6PD- deficient Chinese whose G6PD was well characterized biochemically. DNA samples were obtained from peripheral blood of these individuals for sequencing using a direct polymerase chain reaction (PCR) sequencing procedure. From these 43 samples, we have identified five different types of nucleotide substitutions in the G6PD gene: at cDNA 1388 from G to A (Arg to His); at cDNA 1376 from G to T (Arg to Leu); at cDNA 1024 from C to T (Leu to Phe); at cDNA 392 from G to T (Gly to Val); at cDNA 95 from A to G (His to Arg). These five nucleotide substitutions account for over 83% of our 43 G6PD-deficient samples and these substitutions have not been reported in non-Asians. The substitutions found at cDNA 392 and cDNA 1024 are new findings. The substitutions at cDNA 1376 and 1388 account for over 50% of the 43 samples examined indicating a high prevalence of these two alleles among G6PD-deficient Chinese. Our findings add support to the notion that diverse point mutations may account largely for much of the phenotypic heterogeneity of G6PD deficiency.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-07-15
    Description: Murine high proliferative potential colony-forming cells (HPP-CFC) are known to be heterogenous with respect to proliferative capacity and in vitro responsiveness to hematopoietic growth factors. We have separated HPP-CFC into several subpopulations using counterflow centrifugal elutriation. Although HPP-CFC were identified in all of the elutriated fractions of both C3H/HeJ and C57BI/6J bone marrow cells, the distribution of HPP-CFC as well as of colony-forming units-granulocyte- macrophage (CFU-GM) in each fraction differed between these two strains of inbred mice. Six subsets of HPP-CFC were resolved that differed in growth factor responsiveness. A low-density HPP-CFC subpopulation was isolated that was distinct from day-12 spleen colony-forming units (CFU- S12), CFU-GM, and bone marrow stromal cells. This unique subpopulation of HPP-CFC is rate (3% to 9% of total HPP-CFC), appears to be lymphocyte-like in morphology, and behaves the most primitive of the HPP-CFC subsets by requiring multiple hematopoietic growth factors for optimal in vitro cloning. Further characterization of this subpopulation of HPP-CFC will determine the position of these cells in the HPP-CFC heirarchy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-01-01
    Description: We have examined the effects of recombinant human interleukin-11 (rhIL- 11) on the recovery of peripheral blood cell counts and proliferation of progenitors and hematopoietic stem cells (day 12 colony-forming units-spleen-CFU-S12) in vivo using a mouse bone marrow (BM) and spleen cell transplantation model. Recovery of leukocytes was accelerated in animals receiving daily administration of rhIL-11 (100 micrograms/kg/d) and reached normal levels by day 14 posttransplantation. This increased total leukocyte count reflected mainly an increase in neutrophils. Neutropenia (absolute neutrophil count [ANC] 〈 1,500) was present in control transplant mice for 14 to 15 days, while in the rhIL-11-treated group, neutrophils recovered to normal by days 8 to 10 and continued to increase until day 19. Animals treated with rhIL-11 had only 1 day with ANC demonstrated 〈 500. Correspondingly, rhIL-11 treatment increased granulocyte-macrophage progenitors (CFU-GM) derived from both spleen and BM cells. Higher doses of IL-11 increased CFU-GM nearly threefold and CFU-Mix fourfold to fivefold, while increasing burst-forming units- erythroid to a lesser degree. BM and spleen cellularity were both increased in IL-11-treated mice, but no increase in CFU-S12 was noted. In addition, in vivo daily administration of IL-11 increased peripheral platelet counts by threefold over control transplant mice at day 10 posttransplantation during the post-irradiation platelet nadir. Further treatment led to platelet counts higher than normal 18 days posttransplantation when control animals had just attained normal platelet counts. IL-11 can accelerate the recovery of the peripheral blood leukocytes, mainly neutrophils, and platelets in transplant mice, effects that may be clinically useful in future applications for BM transplantation and chemotherapy-related cytopenias.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-08-01
    Description: Molecular analysis of the hematopoietic microenvironment (HM) has led to the characterization and molecular cloning of two unique growth factors produced by stromal cells. Interleukin (IL)-11 and stem-cell factor (SCF; steel factor [SF]) have been shown in a variety of in vitro culture systems to stimulate distinct populations of stem, progenitor, and more differentiated cell types. We have analyzed and compared the effects of each growth factor administered to mice undergoing bone marrow transplantation (BMT) after total body irradiation (TBI). We report that IL-11 stimulates platelet and neutrophil recovery, while the main effect of SCF is on erythroid cell recovery in this model. Mice treated with the combination of IL-11 and SCF show increases in all three lineages compared with control mice, without obvious toxicity. In addition, both the type of progenitor- and stem-cell populations stimulated and the anatomic localization of effects seen with each growth factor are distinct. These data in mice suggest that the combination of IL-11 and SCF might be useful in humans undergoing myeloablative therapies.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-04-15
    Description: The underlying DNA changes associated with glucose-6-phosphate dehydrogenase (G6PD)-deficient Asians have not been extensively investigated. To fill this gap, we sequenced the G6PD gene of 43 G6PD- deficient Chinese whose G6PD was well characterized biochemically. DNA samples were obtained from peripheral blood of these individuals for sequencing using a direct polymerase chain reaction (PCR) sequencing procedure. From these 43 samples, we have identified five different types of nucleotide substitutions in the G6PD gene: at cDNA 1388 from G to A (Arg to His); at cDNA 1376 from G to T (Arg to Leu); at cDNA 1024 from C to T (Leu to Phe); at cDNA 392 from G to T (Gly to Val); at cDNA 95 from A to G (His to Arg). These five nucleotide substitutions account for over 83% of our 43 G6PD-deficient samples and these substitutions have not been reported in non-Asians. The substitutions found at cDNA 392 and cDNA 1024 are new findings. The substitutions at cDNA 1376 and 1388 account for over 50% of the 43 samples examined indicating a high prevalence of these two alleles among G6PD-deficient Chinese. Our findings add support to the notion that diverse point mutations may account largely for much of the phenotypic heterogeneity of G6PD deficiency.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-08-01
    Description: Molecular analysis of the hematopoietic microenvironment (HM) has led to the characterization and molecular cloning of two unique growth factors produced by stromal cells. Interleukin (IL)-11 and stem-cell factor (SCF; steel factor [SF]) have been shown in a variety of in vitro culture systems to stimulate distinct populations of stem, progenitor, and more differentiated cell types. We have analyzed and compared the effects of each growth factor administered to mice undergoing bone marrow transplantation (BMT) after total body irradiation (TBI). We report that IL-11 stimulates platelet and neutrophil recovery, while the main effect of SCF is on erythroid cell recovery in this model. Mice treated with the combination of IL-11 and SCF show increases in all three lineages compared with control mice, without obvious toxicity. In addition, both the type of progenitor- and stem-cell populations stimulated and the anatomic localization of effects seen with each growth factor are distinct. These data in mice suggest that the combination of IL-11 and SCF might be useful in humans undergoing myeloablative therapies.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...