ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Picea abies  (1)
  • Ribulose 1,5-bisphosphate carboxylase-oxygenase  (1)
  • 1990-1994  (2)
  • 1994  (1)
  • 1993  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Light climate ; Nicotiana (photosynthesis) ; Photosynthesis ; Ribulose 1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (tobacco, antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 μmol·m−2·s−1 irradiance, and at 28°C at 100, 300 and 1000 μmol·m−2·s−1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 μmol·m−2·s−1)-grown plants are exposed to high (750–1000 μmol·m−2·s−1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 μmol·m−2·s−1) are suddenly exposed to high and saturating irradiance (1500–2000 μmol·m−2·s−1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in “sun” leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the “light” reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) ‘Antisense’ plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: atmospheric deposition ; δ15N ; δ34S ; forest decline ; nitrogen ; Picea abies ; stable isotopes ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...