ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • alloxan-diabetes  (1)
  • phosphoglucose isomerase  (1)
  • Springer  (2)
  • 1990-1994  (2)
  • 1965-1969
  • 1920-1924
  • 1905-1909
  • 1992  (2)
Collection
Publisher
  • Springer  (2)
Years
  • 1990-1994  (2)
  • 1965-1969
  • 1920-1924
  • 1905-1909
Year
  • 1992  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 117 (1992), S. 63-70 
    ISSN: 1573-4919
    Keywords: glycogen phosphorylase ; alloxan-diabetes ; cardiomyocytes ; G-protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The basis for the hypersensitive response of glycogen phosphorylase to epinephrine stimulation was investigated in adult rat cardiomyocytes isolated from normal and alloxan-diabetic animals. To assess potential G-protein involvement in the response, normal and diabetic derived myocytes were incubated with either cholera or pertussis toxin prior to hormonal stimulation. Pretreatment of cardiomyocytes with cholera toxin resulted in a potentiated response to epinephrine stimulation whereas pertussis toxin did not affect the activation of this signaling pathway. To determine if the enhanced response of phosphorylase activation resulted from an alteration in adenylate cyclase activation, the cells were challenged with forskolin. After 3 hr in primary culture, diabetic cardiomyocytes exhibited a hypersensitive response to forskolin stimulation relative to normal cells. However, after 24 hr in culture, both normal and diabetic myocytes responded identically to forskolin challenge. The present data suggest that a cholera toxin sensitive G-protein mediates the hypersensitive response of glycogen phosphorylase to catecholamine stimulation in diabetic cardiomyocytes and this response which is present in alloxan-diabetic cells and is induced in vitro in normal cardiomyocytes is primarily due to a defect at a post-receptor site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 19 (1992), S. 745-757 
    ISSN: 1573-5028
    Keywords: Clarkia lewisii ; exons ; gene structure ; isozymes ; phosphoglucose isomerase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gene encoding a cytosolic isozyme of phosphoglucose isomerase (PGI, EC 5.3.1.9) was isolated from Clarkia lewisii, a wild flower native to California, and the structure and sequence of the entire coding region determined. PGI catalyzes an essential step in glycolysis and carbohydrate biosynthesis in plants. Spanning about 6 kb, the gene has 23 exons and 22 introns, the highest number yet reported in plants. The exons range in size from 43 to 156 nt and encode a protein of 569 amino acids. The protein is about 44–46% identical to the inferred protein sequences of pig, Escherichia coli and Saccharomyces cerevisiae. All of the introns are bordered with the consensus 5′-GT...AG-3′ dinucleotides. The longest intron includes a large stem-loop structure bounded by a perfect 9 nt direct repeat. We cloned the PGI gene from a genomic library prepared from a single plant of known PGI genotype. The locus and allele of the clone were identified by matching restriction fragments to fragments from genetically defined genomic DNAs by Southern hybridization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...