ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
  • 1993  (2)
  • 1991  (2)
Collection
Years
  • 1990-1994  (4)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Elevated levels of CO2 in the atmosphere are expected to affect plant performance and may alter global temperature patterns. Changes in mean air temperatures that might be induced by rising levels of CO2 and other greenhouse gases could also be accompanied by increased variability in daily temperatures such that acute increases in air temperature may be more likely than at present. Consequently, we investigated whether plants grown in a CO2 enriched atmosphere would be differently affected by a heat shock than plants grown at ambient CO2 levels. Plants of a C3 annual (Abutilon theophrasti), a C3 annual crop (Sinapis alba) and a C4 annual (Amaranthus retroflexus) were grown from seed in growth chambers under either 400 or 700cm3 m−3 CO2, and were fertilized with either a high or low nutrient regime. Young seedlings of S. alba, as well as plants of all species in either the vegetative or reproductive phase of growth were exposed to a 4-h heat shock in which the temperature was raised an additional 14–23°C (depending on plant age). Total biomass and reproductive biomass were examined to determine the effect of CO2, nutrient and heat shock treatments on plant performance. Heat shock, CO2, and nutrient treatments, all had some significant effects on plant performance, but plants from both CO2 treatments responded similarly to heat shocks. We also found, as expected, that plants grown under high CO2 had dramatically decreased tissue N concentrations relative to plants grown under ambient conditions. We predicted that high-CO2-grown plants would be more susceptible to a heat shock than ambient-CO2-grown plants, because the reduced N concentrations of high-CO2 grown plants could result in the reduced synthesis of heat shock proteins and reduced thermotolerance. Although we did not examine heat shock proteins, our results showed little relationship between plant nitrogen status and the ability of a plant to tolerate an acute increase in temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Allometry ; C/N Balance ; Global change ; Nitrogen-use efficiency ; Physiological adjustments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 μmol·mol−1 or 700 μmol·mol−1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-03-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-09-01
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...