ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-09-07
    Description: A protein crystal structure is usually described by one single structure, which largely omits the dynamical behavior of the molecule. A molecular dynamics method with a time-averaged crystallographic restraint was used to overcome this limitation. This method yields an ensemble of structures in which all possible thermal motions are allowed, that is, in additional to isotropic distributions, anisotropic and anharmonic positional distributions occur as well. In the case of bovine pancreatic phospholipase A2, this description markedly improves agreement with the observed x-ray diffraction data compared to the results of the classical one-model structure description. Time-averaged crystallographically restrained molecular dynamics reveals large mobilities in the loops involved in lipid bilayer association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, P -- van Gunsteren, W F -- Hol, W G -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1149-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BIOSON Research Institute, University of Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2396108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Crystallography ; Hot Temperature ; Models, Molecular ; Motion ; *Phospholipases ; *Phospholipases A ; Phospholipases A2 ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-04-06
    Description: The epidermal growth factor (EGF) receptor (EGFR) can efficiently couple with mitogenic signaling pathways when it is transfected into interleukin-3 (IL-3)-dependent 32D hematopoietic cells. When expression vectors for erbB-2, which is structurally related to EGFR, or its truncated counterpart, delta NerbB-2, were introduced into 32D cells, neither was capable of inducing proliferation. This was despite overexpression and constitutive tyrosine kinase activity of their products at levels associated with potent transformation of fibroblast target cells. Thus, EGFR and erbB-2 couple with distinct mitogenic signaling pathways. The region responsible for the specificity of intracellular signal transduction was localized to a 270-amino acid stretch encompassing their respective tyrosine kinase domains. Thus, tissue- or cell-specific regulation of growth factor receptor signaling can occur at a point after the initial interaction of growth factor with receptor. Such specificity in signal transduction may account for the selection of certain oncogenes in some malignancies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Fiore, P P -- Segatto, O -- Taylor, W G -- Aaronson, S A -- Pierce, J H -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):79-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2181668" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Division ; Cell Line ; DNA/genetics ; DNA, Recombinant ; Fibroblasts/cytology/metabolism ; Gene Expression ; Genetic Vectors ; Hematopoietic Stem Cells/cytology/metabolism ; Immunoblotting ; Mice ; *Mitogens ; Molecular Sequence Data ; Protein-Tyrosine Kinases/genetics/*physiology ; Proto-Oncogene Proteins/genetics/*physiology ; Receptor, Epidermal Growth Factor/genetics/*physiology ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-09-21
    Description: The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumann, R R -- Leong, S R -- Flaggs, G W -- Gray, P W -- Wright, S D -- Mathison, J C -- Tobias, P S -- Ulevitch, R J -- AI 15136/AI/NIAID NIH HHS/ -- AI 25563/AI/NIAID NIH HHS/ -- GM 28485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1429-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402637" target="_blank"〉PubMed〈/a〉
    Keywords: *Acute-Phase Proteins ; Amino Acid Sequence ; Animals ; Base Sequence ; Blood Proteins/*genetics ; Carrier Proteins/*genetics/metabolism ; Gene Library ; Humans ; Kinetics ; Lipid A/metabolism ; Lipopolysaccharides/*metabolism/pharmacology ; Male ; *Membrane Glycoproteins ; Molecular Sequence Data ; Oligonucleotide Probes ; Rabbits ; Sequence Homology, Nucleic Acid ; Sheep ; Staphylococcus aureus ; Tumor Necrosis Factor-alpha/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...