ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (6)
  • 1990-1994  (2)
  • 2012  (6)
  • 1990  (2)
  • 1
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Gravity waves are prominent in the polar region of the terrestiral thermosphere, and can be excited by perturbations in Joule heating and Lorents force due to magnetospheric processes. We show observations from the Dynamics Explorer-2 satellite to illustrate the complexity of the phenomenon and review the transfer function model (TFM) which has guided our interpretation. On a statistical basis, the observed atmospheric perturbations decrease from the poles toward the equator and tend to correlate with the magnetic activity index, Ap, although individual measurements indicate that the magnetic index is often a poor measure of gravity wave excitation. The theoretical models devised to describe gravity waves are multifaceted. On one end are fully analytical, linear models which are based on the work of Hines. On the other end are fully numerical, thermospheric general circulation models (TGCMs) which incorporate non-linear processes and wave mean flow interactions. The transfer function model (TFM) discussed in this paper is between these two approaches. It is less restrictive than the analytical approach and relates the global propagation of gravity waves to their excitation. Compared with TGCMs, the TFM is simplified by its linear approximation; but it is not limited in spatial and temporal resolution, and the TFM describes the wave propagation through the lower atmosphere. Moreover, the TFM is semianalytical which helps in delineating the wave components. Using expansions in terms of spherical harmonics and Fourier components, the transfer function is obtained from numerical height integration. This is time consuming computationally but needs to be done only once. Once such a transfer function is computed, the wave response to arbitrary source distributions on the globe can then be constructed in very short order. In this review, we discuss some numerical experiments performed with the TFM, to study the various wave components excited in the auroral regions which propagate through the thermosphere and lower atmosphere, and to elucidate the properties of realistic source geometries. The model is applied to the interpretation of satellite measurements. Gravity waves observed in the thermosphere of Venus are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-30
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-02
    Description: Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(ν2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3–4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, kVT, and its value estimated from the atmospheric observations. In this study, we retrieve kVT in the altitude region 85–105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 μm radiation. The averaged kVT value obtained in this work is 6.5 ± 1.5 × 10−12 cm3 s−1 that is close to other estimates of this coefficient from the atmospheric observations. However, the retrieved kVT also shows altitude dependence and varies from 5.5 ± 1.1 × 10−12 cm3 s−1 at 90 km to 7.9 ± 1.2 × 10−12 cm3 s−1 at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 μm radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the "non-thermal" oxygen atoms with CO2 molecules.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: This paper presents some numerical experiments performed with the TFM to study the various wave components excited in the auroral regions that propagate through the thermosphere and lower atmosphere, and to demonstrate the properties of realistic source geometries. The model is applied to the interpretation of satellite measurements, and gravity waves seen in the thermosphere of Venus are discussed. Gravity waves are prominent in the terrestrial thermosphere polar region and can be excited by perturbations in Joule heating and Lorentz force due to magnetospheric processes. Observations from the Dynamics Explorer-2 satellite are used to illustrate the complexity of the phenomenon and to review the TFM that is utilized.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Space Science Reviews (ISSN 0038-6308); 54; 297-375
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN9334 , SCIENCE (ISSN 0036-8075); 335; 6066; 324-328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: It has been found that for more than one polar summer season between 2002-2010, the northern polar mesospheric region near and above about 80 km was warmer than normal. The strongest warming effect of this type was observed to occur during northern summer 2002. Theoretical studies have implied that these "anomalies" were preceded by unusual dynamical processes in the southern hemisphere. We have analyzed temperature distributions measured by the SABER limb scanning infrared radiometer aboard the NASA TIMED satellite between 2002-2010 at altitudes from 15 to 110 km and for latitudes between 83 S to 83 N. We describe the approach to trace the inter-hemispheric temperature correlations demonstrating the global features that were unique for the "anomalous" northern polar summers. From our analysis of SABER data from 2002-2010, the anomalous heating for the northern mesopause region during northern summer was accompanied by stratospheric heating in the equatorial region. In the winter hemisphere it is accompanied by heating in the lower stratosphere and mesopause region, and cooling in the stratopause region. Also, all the elements of the temperature anomaly structure appear to develop and fade away nearly simultaneously, thereby suggesting either a global influence or a rapid exchange.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.00293.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.
    Keywords: Geophysics; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN9129 , Atmospheric Chemistry and Physics (ISSN 1680-7316); 12; 19; 9013-9023
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-20
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...