ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
  • 1989  (3)
Collection
Publisher
Years
  • 1985-1989  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 16 (1989), S. 621-629 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The stable polymorph of MnTiO3 at room temperature and pressure has the ilmenite structure. At high temperatures and pressures, MnTiO3 ilmenite transforms to a LiNbO3 structure through a cation reordering process (Ko and Prewitt 1988). Single crystals of both phases have been studied with X-ray diffraction to 5.0 GPa. We have obtained the first experimental verification of the close relationship between the LiNbO3 and perovskite structures, first postulated by Megaw (1968). MnTiO3 with the LiNbO3 structure (MnTiO3 II) transforms directly to an orthorhombic perovskite structure (MnTiO3 III) between 2.0 and 3.0 GPa. The transition involves a change of volume of -5%, is reversible and has pronounced hysteresis. Only pressure is required to drive the transition because it involves no breaking of bonds; it simply involves rotation of the [TiO6] octahedra about their triad axes accompanied by displacement of the Mn cations to the distorted twelve-coordinated sites formed by the rotations. An unusual aspect of this transition is that twinned MnTiO3 II crystals transform to untwinned MnTiO3 III crystals with increasing pressure. The twin plane of MnTiO3 II, $$\left( {10\bar 1\bar 2} \right)$$ , corresponds to the (001) mirror plane of the orthorhombic perovskite structure. MnTiO3 III examined at 4.5 GPa is very distorted from the ideal cubic perovskite structure. The O(2)-O(2)-O(2) angle describing the tilting in the ab plane is 133.3(7)°, in contrast to 180° for a cubic perovskite and the O(2)-O(2)-O(2) angle describing the tilting in the ac plane is 109.3(4)°, as opposed to 90° in a cubic perovskite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The phase boundary between MnTiO3 I (ilmenite structure) and MnTiO3 II (lithium niobate structure) has been determined by analysis of quench products from reversal experiments in a cubic anvil apparatus at 1073–1673 K and 43–75 kbar using mixtures of MnTiO3 I and II as starting materials. Tight brackets of the boundary give P(kbar)=121.2−0.045 T(K). Thermodynamic analysis of this boundary gives ΔHo=5300±1000 J·mol−1, ΔSo = 1.98 ±1J·K−1· mol−1. The enthalpy of transformation obtained directly by transposed-temperature-drop calorimetry is 8359 ±2575 J·mol−1. Possible topologies of the phase relations among the ilmenite, lithium niobate, and perovskite polymorphs are constrained using the above data and the observed (reversible with hysteresis) transformation of II to III at 298 K and 20–30 kbar (Ross et al. 1989). The observed II–III transition is likely to lie on a metastable extension of the II–III boundary into the ilmenite field. However the reversed I–II boundary, with its negative dP/ dT does represent stable equilibrium between ilmenite and lithium niobate, as opposed to the lithium niobate being a quench product of perovskite. We suggest a topology in which the perovskite occurs stably at low T and high P with a triple point (I, II, III) at or below 1073 K near 70 kbar. The I–II boundary would have a negative P-T slope while the II–III and I–III boundaries would be positive, implying that entropy decreases in the order lithium niobate, ilmenite, perovskite. The inferred positive slope of the ilmenite-perovskite transition in MnTiO3 is different from the negative slopes in silicates and germanates. These thermochemical parameters are discussed in terms of crystal structure and lattice vibrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...