ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 87 (2-4). pp. 323-328.
    Publication Date: 2016-04-11
    Description: Changes in composition of modern benthic ostracod faunas across the continental margin of southwestern Africa occur at boundaries between and within major water masses: a Mixed Layer-Antarctic Intermediate Water (AAIW) boundary at 200 m, an AAIW salinity minimum zone at 650 m, an AAIW bathyal thermocline at 1000 m, and the AAIW/North Atlantic Deep Water (NADW) boundary at 1500 m. In addition, two population changes occur within the NADW at 1.8–2.0 km and 2.0–3.0 km. The Antarctic Bottom Water assemblage is sparse and poorly preserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, Elsevier, vol. 65, no. ALEX(01)-FR-77-01, AFTAC Contract F08606-76-C-0025, pp. 95-104, (ISBN: 0-08-044051-7)
    Publication Date: 1989
    Keywords: Textbook of geophysics ; Gravimetry, Gravitation ; Crustal deformation (cf. Earthquake precursor: deformation or strain)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 162 (1-2). pp. 51-85.
    Publication Date: 2019-05-06
    Description: Seismic refraction investigations along a 440-km long profije on the northern Baltic Shield have resolved the crustal structure in this area of Archaean to Early Proterozoic lithosphere formation. The profile, called the POLAR Profile, extends approximately along a SW-NE-oriented line from the Karelian Province in northern Finland across the Lapland Granulite Belt and the Kola Peninsula Province to the Varanger Peninsula in northeastern Norway. At six shotpoints, large explosions (200–1680 kg), and at three shotpoints, small explosions (80 kg) were detonated and recorded at an average station spacing of 2 km, providing high-quality record sections. A two-dimensional cross section of the crust was obtained by forward modelling using ray-tracing techniques. High-velocity bodies are found in the upper crust related to the Karasjok-Kittilä Greenstone Belt and the Lapland Granulite Belt. They extend to a depth of 6–13 km. In the Karelian Province in the southwest, a low-velocity zone was found between the depths of 8 and 14 km. The middle crust shows a slight increase in the average velocities from the southwest to the northeast, and a small velocity jump is found along a mid-crustal boundary between 18 and 21 km. The thickness of the middle crust varies between 16 and 18 km. The lower crust and the crust-mantle boundary (Moho) show considerable lateral variation. The top of the lower crust lies between 26 and 33 km, while its thickness decreases from 21 km in the southwest to 10–14 km beneath the Lapland Granulite Belt and the Inari Terrain, reaching 20 km again in the extreme northeast. The velocities also change laterally. The thin lower crust is characterized by rather low velocities (6.8–6.9 km/s), whereas in the southwest and northeast the velocities (6.9–7.3 km/s) resemble more typical shield structures. The Moho is found at 47 km in the Karelian Province, rises to 40 km beneath the Lapland Granulite Belt and descends to 46 km in the northeastern part of the Kola Peninsula Province. The upper mantle velocities at the Moho range from 8.1 km/s in the region of the thin crust, to 8.5 km/s and more beneath the Karelian Province. It is tempting to suggest that the anomalous lower crust underlying the Lapland Granulite Belt and the Inari Terrain may represent the remnants of an Early Proterozoic back-arc basin that was active prior to the 2.0 to 1.9 Ga plate convergence event, during which the Lapland Granulite Belt was thrust onto the Archaean basement of the Karelian Province. Another explanation is to assume that the velocity reduction in the anomalous lower crust was caused by a rather pronounced uplift of this region following the 1.9-Ga collision event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-10
    Description: Ocean crustal carbon uptake during seafloor alteration at DSDP Sites 417A, 417D, and 418A exceeds the estimated loss of carbon during magmatic ridge outgassing. If these sites are representative for oceanic crust in general, 2.2–2.9 × 1012 moles of carbon are removed from the oceans per year as a net flux of carbon between the oceanic crust and seawater. Although most of this carbon occurs as calcium carbonate, this ocean crustal carbonate probably cannot be considered part of the marine calcium carbonate sink since much of the Ca in these carbonates must be derived from basalt alteration that is not balanced by a concomitant uptake of seawater Mg. Our present estimate cannot be satisfactorily applied to global carbon budgets, because of uncertainties in the bulk budget of ocean floor alteration and because of the uniqueness of our estimate. Yet, our data document that the formation of ocean crust provides a significant sink for carbon that should be included in models of the global cycling of carbon. Furthermore, magmatic outgassing during ocean crust emplacement and seafloor basalt alteration may provide a buffering mechanism for atmospheric carbon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...