ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon uptake  (1)
  • Photosynthesis  (1)
  • Carbon partitioning
  • Storage
  • Springer  (2)
  • 1995-1999
  • 1985-1989  (2)
  • 1988  (2)
Collection
Publisher
  • Springer  (2)
Years
  • 1995-1999
  • 1985-1989  (2)
Year
  • 1
    ISSN: 1432-1939
    Keywords: Picea abies ; Forest decline ; Stomatal response ; Photosynthesis ; Mg-deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary CO2 assimilation rate (A) and leaf conductance (g) were measured in the field on intact branches of 35-year-old Picea abies (L.) Karst. trees, in five plots each in a healthy and a declining stand. The declining site included trees with yellow needles. In order to separate atmospheric effects on gas exchange from effects of nutrient deficiency, direct effects of atmospheric pollutants were studied on green needles of different age classes in plots of trees at different stages of visible decline. The effects of nutrient deficiency on gas exchange were studied on a different group of trees showing needles of various degrees of yellowing. CO2 assimilation of green needles at the same leaf conductance fell somewhat only when needles had reached 5 years of age, the oldest age examined in this study. Leaf conductance decreased with increasing needle age, but green needles in the declining stand had leaf conductances similar to those of needles in the healthy stand. Stomata of needles with different magnesium concentrations responded to light and air humidity in all age classes. Thus, as long as needles were green, no dese effect was detectable up to 5 years of exposure to atmospheric emissions. Since all needles, green and yellow, were exposed to the same pollution levels, differences in gas exchange between green and yellow needles could not be explained simply in terms of long-term direct effects of air pollution. Needle magnesium contents were correlated with needle yellowing. Neither needle color change nor the magnesium concentration were related to g, but CO2 uptake at ambient CO2 levels declined with lower magnesium concentration and greater degrees of needle yellowing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Trees 2 (1988), S. 233-241 
    ISSN: 1432-2285
    Keywords: Larix ; Carbon uptake ; Respiration ; Carbon balances ; Water loss ; Sun and shade branches
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol−1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol−1 year−1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...