ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • 1985-1989  (3)
  • 1987  (3)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (3)
  • Mathematics
  • Process Engineering, Biotechnology, Nutrition Technology
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 7 (1987), S. 761-791 
    ISSN: 0271-2091
    Keywords: Convection-Diffusion Problems ; Petrov-Galerkin Methods ; Free-Boundary Problems ; Solidification ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A Petrov-Galerkin finite element method is presented for calculation of the steady, axisymmetric thermosolutal convection and interface morphology in a model for vertical Bridgman crystal growth of nondilute binary alloys. The Petrov-Galerkin method is based on the formulation for biquadratic elements developed by Heinrich and Zienkiewicz and is introduced into the calculation of the velocity, temperature and concentration fields. The algebraic system is solved simultaneously for the field variables and interface shape by Newton's method. The results of the Petrov-Galerkin method are compared critically with those of Galerkin's method using the same finite element grids. Significant improvements in accuracy are found with the Petrov-Galerkin method only when the mesh is refined and when the formulation of the residual equations is modified to account for the mixed boundary conditions that arise at the solidification interface. Calculations for alloys with stable and unstable solute gradients show the occurrence of classical flow transitions and morphological instabilities in the solidification system.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-10-01
    Description: The three-dimensional nonlinear oscillations of an isolated, inviscid drop with surface tension are studied by a multiple timescale analysis and pre-averaging applied to the variational principle for the appropriate Lagrangian. Amplitude equations are derived which describe the generic cubic resonance caused by the spatial degeneracy of the eigenfrequencies of the linear normal modes. This resonant coupling leads to the instability of the finite amplitude axisymmetric oscillations to small non-axisymmetric perturbations, as is demonstrated here for the three and four-lobed normal modes. Solutions to the interaction equations that describe finite amplitude, non-axisymmetric travelling-wave solutions are also obtained and their stability is investigated. A non-generic cubic resonance between the two-lobed and four-lobed oscillatory modes leads to quasi-periodic motions. © 1987, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-10-01
    Print ISSN: 0045-7825
    Electronic ISSN: 1879-2138
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...