ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
  • Wiley-Blackwell  (1)
  • Oxford University Press
  • Springer Nature
  • 1985-1989  (3)
  • 1987  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 65 (1987), S. 363-374 
    ISSN: 1434-6036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 68 (1987), S. 149-159 
    ISSN: 1434-6036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The present study highlights some of the complexities observed in the dynamical properties of one-dimensional quantum spin systems. Exact results for zero-temperature dynamic correlation functions are presented for two contrasting situations: (i) a system with a fully ordered ferromagnetic ground state; (ii) a system at aT c=0 critical point. For both situations it is found that the exact results are considerably more complex than has been anticipated on the basis of approximate approaches which are considered to be appropriate and reliable for such situations. A still higher degree of complexity is expected for the dynamics of quantum spin systems which are nonintegrable. The paper concludes with some observations concerning nonintegrability effects and quantum chaos in spin systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal für Praktische Chemie/Chemiker-Zeitung 329 (1987), S. 1038-1038 
    ISSN: 0021-8383
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...