ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (8)
  • 2015-2019
  • 1985-1989  (8)
  • 1950-1954
  • 1945-1949
  • 1987  (8)
  • 1
    Publication Date: 1987-11-01
    Description: The regulatory function of recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) on granulocyte production in vivo was evaluated in an autologous bone marrow transplantation model using rhesus monkeys. Monkeys were exposed to 9.0 Gy total body irradiation and then transplanted with 5.0 x 10(7) low-density bone marrow cells/kg. Alzet miniosmotic pumps were subcutaneously implanted to deliver rhGM-CSF at a rate of 50,400 U/kg/d. Minipumps, containing either rhGM-CSF or saline, were implanted between zero and five days after transplantation for seven days. Kinetic recoveries of peripheral blood cells after either saline or rhGM-CSF treatment were compared. Treatment with rhGM-CSF accelerated the recovery of neutrophils. Neutrophils in rhGM-CSF-treated animals recovered to 80% (3.4 x 10(3)/mm3) pre-irradiation control levels by day 20, in comparison with only 33% (0.9 x 10(3)/mm3) recovery for saline control monkeys. In addition, the recovery of neutrophils was enhanced over that of the controls, reaching 140% v 70% on day 30. Another prominent feature of rhGM-CSF-treated monkeys was the accelerated recovery of platelets, reaching near 50% normal levels by day 24 in comparison with 20% of normal levels for controls. The infusion of rhGM-CSF was shown to be an effective regulator of early hematopoietic regeneration, leading to the accelerated recovery of both neutrophils and platelets and then providing a consistent sustained increase of neutrophils even in the absence of rhGM-CSF.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-07-01
    Description: Autologous bone marrow transplants (BMTs) can repopulate the hematologic system of patients treated with marrow-ablative chemotherapy and/or radiotherapy. However, treatment of the bone marrow graft to eliminate residual tumor cells prior to reinfusion can delay the return of peripheral blood elements, presumably from damage to or loss of hematopoietic stem cells responsible for hematologic recovery. To develop a model predictive of hematologic recovery, we studied the progenitor cell contents of 4-hydroperoxycyclophosphamide (100 micrograms/mL)-purged bone marrow grafts of 40 consecutive patients undergoing autologous BMT at this center. Granulocyte-macrophage colonies (CFU-GM) were grown from all grafts after treatment with this chemotherapeutic agent, but erythroid (BFU-E) and mixed (CFU-GEMM) colonies were grown from only 44% and 33% of the grafts respectively. The recovery of CFU-GM after purging ranged from 0.07% to 23%. The logarithm of CFU-GM content of the treated grafts was linearly correlated with the time to recovery of peripheral blood leukocytes (r = -0.80), neutrophils (r = -0.79), reticulocytes (r = -0.60), and platelets (r = -0.66). The CFU-GM content of purged autologous bone marrow grafts may reflect the hematopoietic stem cell content of the grafts and thus predict the rate of hematologic recovery in patients undergoing autologous BMT.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-11-01
    Description: In this report, we describe a flow cytometric analysis of HTLV-I specific binding to fresh and cultured cells on a single cell basis. This assay uses rhodamine hydrocarbon tagged, purified HTLV-I virions according to the procedure originally described for avian retroviruses. Successful HTLV-I transmission was detected by analysis of integrated HTLV-I DNA, virion-associated reverse transcriptase, and/or intracellular HTLV-I core antigen p19 expression. Only a specific virus- cell interaction was detected because nonrhodamine-tagged homologous virus or related HTLV-II interfered with tagged HTLV-I binding. In contrast, an unrelated, nonlabeled animal retrovirus was unable to block tagged HTLV binding. Of the cell lines tested, 2 nonlymphoid mammalian and 3 human lymphoid bound significantly high to moderate levels of HTLV-I-tagged virions. The other three human lymphocyte cell lines were insensitive to HTLV-I adsorption. A direct correlation was observed between HTLV-I binding sites and infectivity of human lymphoid cells alone and not other nonlymphoid animal cells. Fresh normal human mononuclear cells bound low levels of HTLV-I virions. As expected, T lymphocytes demonstrated more binding than did the non-T cell population. Enhancement of HTLV-I cell binding in a subpopulation of mononuclear target cells was achieved with phytohemagglutinin (PHA) activation and interleukin 2 (IL2) stimulation, which correlates well with previously published infectivity studies.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-07-01
    Description: Autologous bone marrow transplants (BMTs) can repopulate the hematologic system of patients treated with marrow-ablative chemotherapy and/or radiotherapy. However, treatment of the bone marrow graft to eliminate residual tumor cells prior to reinfusion can delay the return of peripheral blood elements, presumably from damage to or loss of hematopoietic stem cells responsible for hematologic recovery. To develop a model predictive of hematologic recovery, we studied the progenitor cell contents of 4-hydroperoxycyclophosphamide (100 micrograms/mL)-purged bone marrow grafts of 40 consecutive patients undergoing autologous BMT at this center. Granulocyte-macrophage colonies (CFU-GM) were grown from all grafts after treatment with this chemotherapeutic agent, but erythroid (BFU-E) and mixed (CFU-GEMM) colonies were grown from only 44% and 33% of the grafts respectively. The recovery of CFU-GM after purging ranged from 0.07% to 23%. The logarithm of CFU-GM content of the treated grafts was linearly correlated with the time to recovery of peripheral blood leukocytes (r = -0.80), neutrophils (r = -0.79), reticulocytes (r = -0.60), and platelets (r = -0.66). The CFU-GM content of purged autologous bone marrow grafts may reflect the hematopoietic stem cell content of the grafts and thus predict the rate of hematologic recovery in patients undergoing autologous BMT.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-11-01
    Description: In this report, we describe a flow cytometric analysis of HTLV-I specific binding to fresh and cultured cells on a single cell basis. This assay uses rhodamine hydrocarbon tagged, purified HTLV-I virions according to the procedure originally described for avian retroviruses. Successful HTLV-I transmission was detected by analysis of integrated HTLV-I DNA, virion-associated reverse transcriptase, and/or intracellular HTLV-I core antigen p19 expression. Only a specific virus- cell interaction was detected because nonrhodamine-tagged homologous virus or related HTLV-II interfered with tagged HTLV-I binding. In contrast, an unrelated, nonlabeled animal retrovirus was unable to block tagged HTLV binding. Of the cell lines tested, 2 nonlymphoid mammalian and 3 human lymphoid bound significantly high to moderate levels of HTLV-I-tagged virions. The other three human lymphocyte cell lines were insensitive to HTLV-I adsorption. A direct correlation was observed between HTLV-I binding sites and infectivity of human lymphoid cells alone and not other nonlymphoid animal cells. Fresh normal human mononuclear cells bound low levels of HTLV-I virions. As expected, T lymphocytes demonstrated more binding than did the non-T cell population. Enhancement of HTLV-I cell binding in a subpopulation of mononuclear target cells was achieved with phytohemagglutinin (PHA) activation and interleukin 2 (IL2) stimulation, which correlates well with previously published infectivity studies.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-11-01
    Description: The regulatory function of recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) on granulocyte production in vivo was evaluated in an autologous bone marrow transplantation model using rhesus monkeys. Monkeys were exposed to 9.0 Gy total body irradiation and then transplanted with 5.0 x 10(7) low-density bone marrow cells/kg. Alzet miniosmotic pumps were subcutaneously implanted to deliver rhGM-CSF at a rate of 50,400 U/kg/d. Minipumps, containing either rhGM-CSF or saline, were implanted between zero and five days after transplantation for seven days. Kinetic recoveries of peripheral blood cells after either saline or rhGM-CSF treatment were compared. Treatment with rhGM-CSF accelerated the recovery of neutrophils. Neutrophils in rhGM-CSF-treated animals recovered to 80% (3.4 x 10(3)/mm3) pre-irradiation control levels by day 20, in comparison with only 33% (0.9 x 10(3)/mm3) recovery for saline control monkeys. In addition, the recovery of neutrophils was enhanced over that of the controls, reaching 140% v 70% on day 30. Another prominent feature of rhGM-CSF-treated monkeys was the accelerated recovery of platelets, reaching near 50% normal levels by day 24 in comparison with 20% of normal levels for controls. The infusion of rhGM-CSF was shown to be an effective regulator of early hematopoietic regeneration, leading to the accelerated recovery of both neutrophils and platelets and then providing a consistent sustained increase of neutrophils even in the absence of rhGM-CSF.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-01-01
    Description: Factor IXAlabama is a variant factor IX molecule responsible for a clinically moderate form of hemophilia B. Twenty-five kilobases (kb) of the variant gene, including seven exons coding for the structural protein, were cloned and characterized. The restriction map and the arrangement of coding regions are identical to those of the normal gene. DNA sequence analysis of the coding regions revealed a single base-pair difference between the gene for factor IXAlabama and the normal factor IX gene. An adenine to guanine transition in the first nucleotide of exon d causes the substitution of a glycine codon (GGT) for the normal aspartic acid codon (GAT). This point mutation results in a single amino acid substitution at residue 47 of the zymogen and represents the genetic defect in factor IXAlabama.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1987-01-01
    Description: Factor IXAlabama is a variant factor IX molecule responsible for a clinically moderate form of hemophilia B. Twenty-five kilobases (kb) of the variant gene, including seven exons coding for the structural protein, were cloned and characterized. The restriction map and the arrangement of coding regions are identical to those of the normal gene. DNA sequence analysis of the coding regions revealed a single base-pair difference between the gene for factor IXAlabama and the normal factor IX gene. An adenine to guanine transition in the first nucleotide of exon d causes the substitution of a glycine codon (GGT) for the normal aspartic acid codon (GAT). This point mutation results in a single amino acid substitution at residue 47 of the zymogen and represents the genetic defect in factor IXAlabama.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...