ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-01-13
    Description: In the polymerase chain reaction (PCR), two specific oligonucleotide primers are used to amplify the sequences between them. However, this technique is not suitable for amplifying genes that encode molecules where the 5' portion of the sequences of interest is not known, such as the T cell receptor (TCR) or immunoglobulins. Because of this limitation, a novel technique, anchored polymerase chain reaction (A-PCR), was devised that requires sequence specificity only on the 3' end of the target fragment. It was used to analyze TCR delta chain mRNA's from human peripheral blood gamma delta T cells. Most of these cells had a V delta gene segment not previously described (V delta 3), and the delta chain junctional sequences formed a discrete subpopulation compared with those previously reported.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, E Y -- Elliott, J F -- Cwirla, S -- Lanier, L L -- Davis, M M -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2463672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Gene Amplification ; *Genes ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; RNA-Directed DNA Polymerase ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-08-04
    Description: The pyrimidine analog 5-bromodeoxyuridine (BUdR) competes with thymidine for incorporation into DNA. Substitution of BUdR for thymidine does not significantly affect cell viability but does block cell differentiation in many different lineages. BUdR substitution in a mouse myoblast line blocked myogenic differentiation and extinguished the expression of the myogenic determination gene MyoD1. Forced expression of MyoD1 from a transfected expression vector in a BUdR-substituted myoblast overcame the block to differentiation imposed by BUdR. Activation of BUdR-substituted muscle structural genes and apparently normal differentiation were observed in transfected myoblasts. This shows that BUdR blocks myogenesis at the level of a myogenic regulatory gene, possibly MyoD1, not by directly inhibiting the activation of muscle structural genes. It is consistent with the idea that BUdR selectively blocks a class of regulatory genes, each member of which is important for the development of a different cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tapscott, S J -- Lassar, A B -- Davis, R L -- Weintraub, H -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):532-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2547249" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bromodeoxyuridine/metabolism/*pharmacology ; Cell Differentiation/drug effects ; Cell Line ; Creatine Kinase/genetics ; DNA/metabolism ; Desmin/genetics ; Gene Expression Regulation/*drug effects ; Genes ; Mice ; Muscle Proteins/*genetics ; Muscles/*cytology ; Myogenin ; Nuclear Proteins/*genetics ; Plasmids ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-05-01
    Description: The mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes were examined. When [3H]arachidonate labeling of phospholipids was used as an indicator of phospholipase C activation, transient increases in [3H]diacylglycerol were observed between 0.5 and 10 minutes after the onset of insulin treatment. With [3H]glycerol labeling as an indicator of de novo phospholipid synthesis, [3H]diacylglycerol was increased maximally at 1 minute and remained elevated for 20 minutes. [3H]Glycerol-labeled diacylglycerol was largely derived directly from phosphatidic acid. Insulin increased de novo phosphatidic acid synthesis within 5 to 10 seconds; within 1 minute, this synthesis was 60 times greater than that of controls. Thus, the initial increase in diacylglycerol is due to both increased hydrolysis of phospholipids and a burst of de novo phosphatidic acid synthesis. After 5 to 10 minutes, de novo phosphatidic acid synthesis continues as a major source of diacylglycerol. Both phospholipid effects of insulin seem important for generating diacylglycerol and other phospholipid-derived intracellular signaling substances.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farese, R V -- Konda, T S -- Davis, J S -- Standaert, M L -- Pollet, R J -- Cooper, D R -- AM18608/AM/NIADDK NIH HHS/ -- HD22248/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1987 May 1;236(4801):586-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3107122" target="_blank"〉PubMed〈/a〉
    Keywords: Arachidonic Acid ; Arachidonic Acids/metabolism ; Cell Line ; Diglycerides/*metabolism ; Enzyme Activation ; Glycerides/*metabolism ; Glycerol/metabolism ; Insulin/*pharmacology ; Kinetics ; Muscles/drug effects/*metabolism ; Phosphatidic Acids/*biosynthesis ; Phosphatidylinositols/metabolism ; Phospholipids/metabolism ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...