ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-11-07
    Description: In meiosis I of most organisms, homologous chromosomes pair, recombine, and then segregate to opposite poles of the cell. Crossing-over is normally necessary to ensure the proper segregation of the homologs. Recently developed techniques have made it possible to study meiosis with highly defined artificial chromosomes. These techniques were used to demonstrate the existence of a system capable of segregating pairs of nonrecombined artificial chromosomes, regardless of the extent of their sequence homology. This system may contribute to the high fidelity of meiosis by mediating the segregation of pairs of natural chromosomes that have failed to recombine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, D S -- Murray, A W -- Szostak, J W -- GM-32039/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1986 Nov 7;234(4777):713-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3535068" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes/*physiology ; Crossing Over, Genetic ; *Meiosis ; Nondisjunction, Genetic ; Saccharomyces cerevisiae/*cytology ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...