ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 2010-2014  (2)
  • 1995-1999
  • 1990-1994
  • 1985-1989  (3)
  • 2012  (2)
  • 1986  (3)
Collection
Years
  • 2010-2014  (2)
  • 1995-1999
  • 1990-1994
  • 1985-1989  (3)
Year
  • 1
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 24; 1802-181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A strategy is proposed for controlling aerodynamic instabilities which limit the useful range of both axial and centrifugal turbomachines. Both local and global instabilities (incipient rotating stall and surge) are analyzed. A theory is developed which shows how an additional disturbance, driven from real time data measured within the machine, can be generated so as to realize a device with characteristics fundamentally different from those of the turbomachine without control; for the particular compressor analyzed, the control led to a 20 percent increase in the extent of the stable operating range. The use of structural dynamics to enhance stability is also discussed.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 86-1914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: High-frequency response probes which had previously been used exclusively in the MIT Blowndown Facility were successfully employed in two conventional steady state axial flow compressor facilities to investigate the unsteady flowfields of highly loaded transonic compressors at design point operation. Laser anemometry measurements taken simultaneously with the high response data were also analyzed. The time averaged high response data of static and total pressure agreed quite well with the conventional steady state instrumentation except for flow angle which showed a large spread in values at all radii regardless of the type of instrumentation used. In addition, the time resolved measurements confirmed earlier test results obtained in the MIT Blowdown Facility for the same compressor. The results of these tests have further revealed that the flowfields of highly loaded transonic compressors are heavily influenced by unsteady flow phenomena. The high response measurements exhibited large variations in the blade to blade flow and in the blade passage flow. The observed unsteadiness in the blade wakes is explained in terms of the rotor blades' shed vorticity in periodic vortex streets. The wakes were modeled as two-dimensional vortex streets with finite size cores. The model fit the data quite well as it was able to reproduce the average wake shape and bi-modal probability density distributions seen in the laser anemometry data. The presence of vortex streets in the blade wakes also explains the large blade to blade fluctuations seen by the high response probes which is simply due to the intermittent sampling of the vortex street as it is swept past a stationary probe.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-176879 , NAS 1.26:176879
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN9307 , Environmental Research Letters; 7; 1; 015506
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...