ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1985-1989  (2)
  • 1985  (2)
Collection
Years
  • 1985-1989  (2)
Year
  • 1
    Publication Date: 2019-07-13
    Description: The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: NASA-CR-172554 , NAS 1.26:172554
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: An approach to magnetic bubble memory which incorporates dual conductor current access drive with a self-structured (strongly interacting) bubble lattice is described. This is expected to provide higher operating speeds, defect tolerance, and higher bit density for a given bubble size as compared to present field access bubble devices. Bubble spacings of 2.5 bubble diameters are projected for a prototype device. Experimental work on device components including detectors, major/minor loops, and gates is described. Defect tolerance has also been demonstrated.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: IEEE Transactions on Magnetics (ISSN 0018-9464); MAG-21; 1782-178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...