ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nitrogen
  • Springer  (1)
  • American Chemical Society
  • Elsevier
  • 2000-2004
  • 1985-1989  (1)
  • 1985  (1)
Collection
Publisher
  • Springer  (1)
  • American Chemical Society
  • Elsevier
Years
  • 2000-2004
  • 1985-1989  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 1 (1985), S. 233-256 
    ISSN: 1573-515X
    Keywords: Lake ; nutrients ; phosphorus ; nitrogen ; cycling ; river
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Lake Vanda is a permanently ice covered, meromictic, closed basin lake, located in the Dry Valley region of Southern Victoria Land, Antarctica. A unique feature of the lake water column structure is that the bottom lake waters exist as a natural diffusion cell. The diffusive nature of these waters allows rates of sulfate reduction, nitrification and denitrification to be calculated from nutrient concentration gradients. Calculation reveals that sulfate reduction is by far the most important anoxic process acting to oxidize organic material. In addition, rate calculations reveal that bottom water nutrient profiles are in steady state. One argument in support of this conclusion is that the calculated rate of nitrification balances the flux of ammonia from the anoxic lake waters. The flux of phosphorus from the reducing waters is several times less than would be predicted from the nitrogen and phosphorus content of decomposing lake seston. Solubility calculations show that phosphorus may be actively removed at depth in Lake Vanda by the formation of hydroxyapatite. It is found that estimated rates of nitrogen and phosphorus removal in the bottom lake waters and sediments roughly balance the riverine input flux. This suggests that throughout the lake a nutrient steady state may exist, and that the anoxic zone may be the most important loci for nutrient removal. Finally, the ratio of nitrogen to phosphorus entering Lake Vanda by riverine input is less than the ‘Redfield’ ratio of 16/1; in contrast to the lake waters which are strongly phosphorus limited at all depths. This curious aspect of the lake's nutrient chemistry is explained by the presence of preformed nitrogen, which has been concentrated in the deep brine due to several episodes of evaporative concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...