ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
  • Nitrogen fixation  (9)
  • Water stress  (5)
  • Springer  (14)
  • Periodicals Archive Online (PAO)
  • 1980-1984  (14)
  • 1975-1979
  • 1984  (14)
Collection
  • Articles  (14)
Publisher
  • Springer  (14)
  • Periodicals Archive Online (PAO)
Years
  • 1980-1984  (14)
  • 1975-1979
Year
  • 1
    ISSN: 1432-2048
    Keywords: Carbon dioxide (high partial pressure) ; Electron transport ; Gas exchange ; Phaseolus (CO2 assimilation) ; Photosynthesis at high p(CO2) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Defoliation ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response of CO2-assimilation rate to the intercellular partial pressure of CO2 (p(CO2)) is used to analyse the effects of various growth treatments on the photosynthetic characteristics of P. vulgaris. Partial defoliation caused an increase in CO2-assimilation rate at all intercellular p(CO2). A change in the light regime for growth from high to low light levels caused a decrease of CO2-assimilation rate at all intercellular p(CO2). Growth in a CO2-enriched atmosphere resulted in lowered assimilation assimilation rates compared with controls at comparable intercellular p(CO2). Short-term water stress initially caused only a decline in the CO2-assimilation rate at high intercellular p(CO2), but not at low intercellular p(CO2). Except under severe water stress, changes in the initial slope of the response of CO2-assimilation rate to intercellular p(CO2) were in parallel to those of the in-vitro activity of ribulose-1,5-bisphosphate (RuBP) carboxylase. From the results, we infer that partial defoliation, changes in the light regime for growth, and growth in a CO2-enriched atmosphere cause parallel changes in RuBP-carboxylase (EC 4.1.1.39) activity and the “capacity for RuBP regeneration”, whereas short-term water stress initially causes only a decline in the RuBP-regeneration capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 160 (1984), S. 143-150 
    ISSN: 1432-2048
    Keywords: Photosynthesis and water stress ; Transpiration ; Water stress ; Xanthium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract High transpiration rates were found to affect the photosynthetic capacity of Xanthium strumarium L. leaves in a manner analagous to that of low soil water potential. The effect was also looked for and found in Gossypium hirsutum L., Agathis robusta (C. Moore ex Muell.) Bailey, Eucalyptus microcarpa Maiden, Larrea divaricata Cav., the wilty flacca tomato mutant (Lycopersicon esculentum (L.) Mill.) and Scrophularia desertorum (Munz) Shaw. Two methods were used to distinguish between effects on stomatal conductance, which can lower assimilation by reducing CO2 availability, and effects on the photosynthetic capacity of the mesophyll. First, the response of assimilation to intercellular CO2 pressure (C i) was compared under conditions of high and low transpiration. Second, in addition to estimating C i using the usual Ohm's law analogy, C i was measured directly using the closed-loop technique of T.D. Sharkey, K. Imai, G.D. Farquhar and I.R. Cowan (1982, Plant Physiol, 60, 657–659). Transpiration stress responses of Xanthium strumarium were compared with soil drought effects. Both stresses reduced photosynthesis at high C i but not at low C i; transpiration stress increased the quantum requirement of photosynthesis. Transpiration stress could be induced in small sections of leaves. Total transpiration from the plant did not influence the photosynthetic capacity of a leaf kept under constant conditions, indicating that water deficits develop over small areas within the leaf. The effect of high transpiration on photosynthesis was reversed approximately half-way by returning the plants to low-transpiration conditions. This reversal occurred as fast as measurements could be made (5 min), but little further recovery was observed in subsequent hours.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Rhizobium trifolii ; Symbiosis ; Nodulation ; Nitrogen fixation ; Symbiotic genes ; Reiterated sequences ; Plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Drought stress ; Namib Desert ; Mesembryanthemaceae ; Proline accumulation (drought stress) ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Over a period of seven years (1977–1983) the proline content and its responses to climatic changes were investigated in plants — especially Mesembryanthemaceae — in the southern Namib Desert (South Africa). Among 95 species in 26 families, 61 had detectable amounts of proline. In several of these species the proline content increased considerably in years with insufficient rainfall but decreased when the rainfall was abundant again. When individuals of the same species were grown at different sites, water availability in the soil determined their proline content. Many of the investigated species showed a clear diurnal fluctuation in their proline content with a remarkable proline accumulation during times of highest evaporative demand. In general, the higher the proline content the more pronounced were the changes, indicating that in these species-predominantly annual plants — proline was most probably involved in drought tolerance. The observation that proline accumulation and degradation reacted sensitively to changing climatic conditions over many years confirmed the correlation of proline synthesis to increasing water stress as postulated by the results of laboratory experiments with Mesembryanthemaceae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: Actinorhizae ; Alnus nitrida ; Frankia ; Host-specificity ; Nitrogen fixation ; Root nodules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Two different strains, An 1 and An 2, were obtained from root nodules ofAlnus nitida Endl., collected from one locality in the area of its natural habitat near Bahrin, District Swat, Pakistan. The light and electron microscopy of the isolates revealed the occurrence of septate and branched hyphae bearing sporangia and vesicles. The strains differed in their growth requirements, nitrogen-fixing ability and production of extracellular pigments, thus indicating the existence of more than oneFrankia strain in the same locality. In the absence of combined nitrogen in the medium strain An 1 formed vesicles and fixed N2 (up to 200 nmol C2H4. mg protein−1.h−1), while strain An 2 under the experimental conditions formed only few vesicles and fixed N2 at a very low rate (ca 10 nmol C2H4. mg protein−1 .h−1). The nitrogenase activity of strain An 1 was strongly affected by the O2 concentration.Frankia An 1 and An 2 were infective and effective onA. nitida andA. glutinosa but not onDatisca cannabina andElaeagnus umbellata. Both An 1 and An 2 strains were more infective and effective onA. glutinosa thanFrankia strains AvcIl and CpI1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: Actinorhizas ; Alnus nitida ; Amino acid composition ; Datisca cannabina ; Hydrogen uptake ; Inoculation ; Nitrogen fixation ; Root nodules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The nodulation and the morphology and physiology of the nodules were studied onDatisca cannabina, a perennial herb from northern Pakistan andAlnus nitida, a nodulated tree in the same locality. Both species bear coralloid clusters of actinorhizal nodules. The main free amino acid inD. cannabina nodules was arginine while the predominant free amino acid inA. nitida nodules was citrulline. The infectivity of crushed nodules of both types of plants on their respective host was about 106 infective particles per gram of nodule fresh wt. In cross-inoculation experiments crushed nodule inoculum fromA. nitida failed to induce nodulation onD. cannabina seedlings but the crushed nodule inoculum fromD. cannabina caused low nodulation on seedlings ofA. nitida (103 infective particles. g. nodule fresh wt.). The activity of nitrogenase, hydrogenase and respiration (O2 uptake) were measured in detached nodules, nodule homogenates and the 20 μm residue and 20 μm filtrate preparations from the nodules of both species. Both species showed similar patterns of activities except that only the nodule homogenate and 20 μm residue preparations fromD. cannabina showed pronounced enhancement of the O2 uptake by succinate which was further stimulated by ADP. This has in part been explained by the presence of mitochondria in close connection with the endophyte.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: Actinorhizae ; Datisca cannabina ; Frankia ; Nitrogen fixation ; Root nodules ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The fine structures of the microsymbiont inside the root nodules ofDatisca cannabina have been studied by light, by transmission- and by scanning-electron microscopy. The endophyte is prokaryotic and actinomycetal in nature. The hyphae are septate and branched, diameter 0.3–0.5 μm. The tips of hyphae are swollen to form electron-dense, clubshaped to filamentous vesicles, ranging in diameter: 0.4–1.4 μm. The endophyte penetrates through walls of the cortial cells. The infected zone is kidney shaped and confined to one side of the acentric stele. The orientation of infection is reversed from other actinorhizae exceptCoriaria. The hyphae are near the host cell wall and vesicles are directed towards the central vacuole. Vesicles are aseptate and no collapsing of the vesicle cell wall (void area) has been observed. Vesicle clusters structures are globular with an opening at one side of the cluster. The host cell is multinucleate or contains a lobed nucleus. Groups of mitochondria are located in between the hyphae, suggesting a strong association between the host and the endophyte for energy supply and amino acid production. The consequences of the inability to separate the mitochondria from the vesicle clusters in nodule homogenates in physiological studies have been discussed. Isolated vesicles clusters showed dehydrogenase activity, indicated by the presence of formazan crystals, after incubation with NADH and NBT. Strongest reducing activity was found within the vesicles. The possible role of filamentous vesicles in nitrogen fixation has been discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: Acetylene reduction ; Actinomycete-nodulated ; Legume ; Lime ; Mine spoil ; Nitrogen fixation ; Reclamation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary An acid mine spoil in Southern Indiana was amended with lime (CaCO3) (0.0, 12.5, 25 and 39t/ha) and planted withElaegnus umbellata Thunb.,Alnus glutinosa Gaertn.,Robinia pseudoacacia L.,Robinia fertilis Ashe, ‘Arnot’,Myrica pensylvania Lois,Caragana arborescens L. andShepherdia argentea Nutt. Survival and soil data were collected periodically and plants were harvested 15 months after planting. Nodule and top dry weights were determined and acetylene reduction assays performed on the nodules. Addition of lime caused significant increases in pH, and 39 t/ha of lime were required to maintain a pH above 5.5. Survival of plant material was greatest at the highest lime addition, although response of individual species varied.Elaeagnus umbellata, R. pseudoacacia, R. fertilis ‘Arnot’, andA. glutinosa appeared more tolerant of the harsh conditions. OnlyC. arborescens showed a linear increase in top dry weight due to lime addition.Alnus glutinosa andS. argentea achieved statistically the same growth regardless of pH, andR. fertilis ‘Arnot’ andE. umbellata did not increase in top dry weight above an addition of 25 t/ha.Robinia pseudoacacia achieved maximum top dry weight at 25 t/ha, whereasM. pensylvanica growth declined with increasing pH. Nodule dry weights increased with increasing pH; however,S. argentea showed greater nodule dry weights at lower lime levels. Acetylene reduction rates increased with lime addition.Elaegnus umbellata did not respond above 25 t/ha lime, whereasA. glutinosa did not show an increase until this point.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 77 (1984), S. 3-14 
    ISSN: 1573-5036
    Keywords: Asian-type soybean ; Fast-growingRhizobium japonicum ; Glycine max ; Nitrogen fixation ; Rhizobium japonicum ; Rhizobium physiology ; Root nodule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Physiological and symbiotic characteristics were identified in fast-growing (FG)Rhizobium japonicum. Carbon nutritional patterns linked these rhizobia to other FG rhizobia. They were able to use hexoses, pentoses, disaccharides, trioses, and organic acids for growth, but they were unable to use dulcitol or citrate. These rhizobia produced acid with all carbon sources except intermediates of the Krebs cycle. FGR. japonicum showed no vitamin requirements and were tolerant to 1% NaCl but not to 2%. They nodulated cowpea, pigeon pea, and mung bean but not peanut. Effective, nitrogen-fixing symbioses were observed only with cowpea and pigeon pea. In addition, FGR. japonicum formed effective symbioses with Asian-type soybeans. We concluded that although the physiological characteristics of FGR. japonicum were similar to other FG rhizobia, their symbiotic properties were similar to slow-growing rhizobia of the cowpea miscellany.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: Crude protein ; Nitrogen fertility ; Non-protein nitrogen ; Soluble protein ; Tall fescue ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary An investigation was designed to examine the nature and distribution of nitrogen in tall fescue (Festuca arundinacea Schreb.) as influenced by water regime and N fertility under controlled environment conditions. Three replicates of 10 ppm and 110 ppm N were prepared for both adequately watered and water stress treatments of vegetatively propagated tall fescue. Herbage samples were lyophilized and soluble protein extracted in aqueous buffer and separated from low molecular weight N compounds. Two insoluble fractions (RI, cellular and structural fragments; RII, organellar residue, primarily chloroplasts) and two soluble fractions (SI, soluble protein; SII, low molecular weight compounds) were characterized by Kjeldahl N and acid-hydrolyzable amino-acid analyses. Mild water stress increased the crude protein (CP) concentration of tall fescue, especially under limited N conditions. Nitrogen was redistributed among the fractions when tall fescue was water stressed, regardless of N level. Under adequate water conditions at both N levels, about 30% of the soluble plant N was found in SI but under water stress, SI accounted for 50% of the soluble N. This pattern indicates a conservation of intact, nitrogenous material possibly due to decreased proteolysis under mild water stress conditions. The greatest proportion of total N occurred in fraction RI, regardless of water level, 10 N being greater than 110 N. Organellar residue (RII) accounted for about 18.5% of the total N regardless of treatment. Non-protein, non amino acid N concentrations were greatest under 110 N water stress conditions. Nitrate N concentrations contributed to less than one percent of the non-protein non-amino acid nitrogen. Component analysis of N in tall fescue, empirically determined as CP, elucidated the redistribution of nitrogenous constituents in response to N fertilization and water regime which may alter nutritive quality and/or plant survival. Accumulation of low molecular weight N compounds under water stress conditions could relate to animal health and fungal endophyte problems associated with tall fescue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...