ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phosphorus  (7)
  • biogeochemistry  (6)
  • Springer  (13)
  • American Physical Society
  • Annual Reviews
  • Springer Science + Business Media
  • 1980-1984  (13)
  • 1982  (13)
Collection
Keywords
Publisher
  • Springer  (13)
  • American Physical Society
  • Annual Reviews
  • Springer Science + Business Media
Years
  • 1980-1984  (13)
Year
  • 1982  (13)
  • 1
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: mercury ; methyl mercury ; speciation and sediment-water partitioning ; rivers and lakes ; dissolved and suspended matter ; seasonal and site-specific variations ; biogeochemistry ; pollution ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl− ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl−. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (〉 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl− ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: mercury ; methyl mercury ; speciation and sediment-water partitioning ; rivers and lakes ; dissolved and suspended matter ; seasonal and site-specific variations ; biogeochemistry ; pollution ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl− ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl−. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (〉 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl− ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5117
    Keywords: phosphorus ; nutrient cycling ; stratification ; epilimnion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphorus regeneration from lake sediments, and subsequent migration to trophogenic surface water, significantly contributes to the lake nutrient budgets and algal bloom conditions in some lake types. Decomposition of organic matter in deep water and sediments results in the accumulation of regenerated nutrients, alternate electron acceptors (reduced products of anaerobic respiration = COD), carbon dioxide, and depletion of dissolved oxygen (electron acceptor in aerobic respiration). Thermal stratification creates spatial segregation of trophogenic and tropholytic environments in the lake, resulting in gradients between sediments, hypolimnion, and the epilimnion. Exchange of oxygen, nutrients, and reduced alternate electron acceptors between the hypolimnion and epilimnion affects the productivity of a lake. Secchi depth, temperature, and dissolved oxygen profiles were determined twice each week from May 1980 to October 1980 at each of five lake stations. Nutrient concentration profiles, including total soluble and total phosphorus, ammonium-N, nitrate, soluble Kjeldahl, and total Kjeldahl nitrogen were determined twice each month. Epilimnetic algal samples were collected twice each week using Kemmerer and water column ‘straw’ amplers. Cell counts of total, green, bluegreen, and diatom algae groups were made. Three methods were used to describe hypolimnetic-epilimnetic exchange, including coefficients of eddy diffusion (based on lake heat budget), a graphical method of defining thermocline location, and relative thermal resistance to mixing (RTRM, based on density differences). All three methods yeilded comparable estimates of net seasonal transport. The graphical and RTRM methods described events occurring at shorter intervals (greater resolution). We find general agreement between the three methods of describing hypolimnetic-epilimnetic transport. The frequency of sampling resulted in increased resolution of thermal profiles (in time), allowing accurate estimation of short-term nutrient flux into epilimnetic waters. An algal bloom event occurred 5 to 12 days following erosion of the top of the metalimnion to below the aerobic-anaerobic interface. The lag time to peak algal concentration, following such events, decreased through the summer (June = 12 days, September = 5 days)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5117
    Keywords: mercury ; methyl mercury ; speciation and sediment-water partitioning ; rivers and lakes ; dissolved and suspended matter ; seasonal and site-specific variations ; biogeochemistry ; pollution ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl− ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl−. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (〉 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl− ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 91-92 (1982), S. 241-252 
    ISSN: 1573-5117
    Keywords: pollution ; rivers ; transport ; calculation ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Human activities generate many pollutants from different land uses. These pollutants include nutrients (e.g., phosphorus and nitrogen), toxic substances (e.g., heavy metals and pesticides), and other substances (e.g., chlorides and salts). These materials often enter a river at some upstream point and are transported downstream by the flowing water. Many substances are transported both during storms and during normal river flow and often the major portion of the transport occurs during the storms. This paper considers the quantification of transport primarily during storms. First, the characteristics of storm transport are discussed. Then, a calculation method for estimating the distance of travel for sediment related materials is presented. Third, a technique to estimate the amount of a given chemical passing a point in a stream over a specified period of time is presented. The last part of this paper contains a technique for tracing the movement of substances through a river network. In particular, this procedure yields information as to the source of given pollutants over the entire Storm period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 91-92 (1982), S. 41-57 
    ISSN: 1573-5117
    Keywords: biogeochemistry ; rivers ; sediment ; water quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To understand the nature of sediment-associated nutrient and contaminant transport dynamics in fluvial systems, a stormflow sampling program of suspended solids is reported for one water year in a representative rural diffuse source catchment of southeastern Ontario. Bulk samples of subsieve suspended solids were obtained using field-portable continuous-flow centrifuge apparatus. The physical and geochemical properties of suspended solids show no significant intersite differences over reaches of 1 500–2 000 m, yet display distinctive seasonal trends. Systematic seasonal changes in particle size, organic content, and Ca, P, Mn, Al, Ti, Fe, and K appear to reflect the changing role of partial area hydrology. Ca, P, and Mn are bioaccumulated by stream algae. Mineral signature is relatively constant over the year.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 96 (1982), S. 105-111 
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; exrretion ; food quality ; zooplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rates of nitrogen and phosphorus release from individualDaphnia magna were determined by measuring ammonia and soluble reactive phosphorus in successive 10-min incubations in small (0.05 ml) vessels after the animals were removed from their food. Release rates of both nutrients were generally highest initially and decreased with time after removal. The ratio of nitrogen to phosphorus released increased with time after animals were removed from an artificial detritus/bacterial food; ratios were lower and changed with time less for animals fed algae. These data suggest errors may be introduced by assumptions of constant stoichiometry for nutrient release in varying environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 91-92 (1982), S. 241-252 
    ISSN: 1573-5117
    Keywords: pollution ; rivers ; transport ; calculation ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Human activities generate many pollutants from different land uses. These pollutants include nutrients (e.g., phosphorus and nitrogen), toxic substances (e.g., heavy metals and pesticides), and other substances (e.g., chlorides and salts). These materials often enter a river at some upstream point and are transported downstream by the flowing water. Many substances are transported both during storms and during normal river flow and often the major portion of the transport occurs during the storms. This paper considers the quantification of transport primarily during storms. First, the characteristics of storm transport are discussed. Then, a calculation method for estimating the distance of travel for sediment related materials is presented. Third, a technique to estimate the amount of a given chemical passing a point in a stream over a specified period of time is presented. The last part of this paper contains a technique for tracing the movement of substances through a river network. In particular, this procedure yields information as to the source of given pollutants over the entire Storm period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...