ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Extended irreversible thermodynamics  (1)
  • equilibrium kinetics in enzyme crystals  (1)
  • 2005-2009
  • 1980-1984  (2)
  • 1975-1979
  • 1982  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 29 (1982), S. 387-396 
    ISSN: 1572-9613
    Keywords: Extended irreversible thermodynamics ; relaxation times ; constitutive equations ; conserved and nonconserved variables ; entropy balance equation Boltzmann equation ; moment method ; Burnett equations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The basic postulates of the extended irreversible thermodynamics are derived from the kinetic model for a dilute monoatomic gas. Using the Grad 13-moment method to solve the full nonlinear Boltzmann equation for molecules conceived as soft spheres we obtain the microscopic expressions for the entropy flux, the entropy production, and the generalized Pfaffian for the extended definition of entropy as required by such a theory. Some of the physical implications of these results are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: crystals of aspartate aminotransferase ; equilibrium kinetics in enzyme crystals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Orthorhombic single crystals of cytoplasmic aspartate aminotransferase were examined alone or in the presence of substrates or inhibitors to quantitatively compare the interaction of ligands with the active-site chromophore between soluble and crystalline enzyme. As in enzyme solutions, equilibrium kinetic measurements can be made between substrates and single crystals of cytoplasmic aspartate aminotransferase. The absorption spectra of ligand-free enzyme forms and of enzyme-substrate or-inhibitor complexes are as distinctive as when the enzyme is in solution. The dissociation constants for glutamate with the pyridoxal form of the enzyme are identical to those in solution. The substrate analog erythro-β-hydroxyaspartate also binds with equal affinity to the active site in enzyme crystals as in solution; and the affinity of α-ketoglutarate to bind in nonproductive complexes with the pyridoxal form of the enzyme is also unimpaired in the crystal (K d =2 mM). In contrast to the affinity constants, the stoichiometry of the interactions does not appear to correlate to those in solution. In the presence of an amino acid plus keto acid substrates pair, the absorbance values of the enzyme-substrate complex(es) could be interpreted as for occupany of only half the available sites in the crystals. Yet an amino acid, cysteine sulfinate, and α-keto acids such as β, β-difluorooxalacetate convert all active sites in the crystal to the pyridoxamine or pyridoxal form when added to the pyridoxal or pyridoxamine forms, respectively. This ability to completely undergo substrate-induced half-transamination and the apparently conflicting results in trapping half the sites in enzyme-substrate complexes are incorporated into a proposed reciprocating mechanism applicable only to the crystalline state of the enzyme and dictated by crystal packing forces rather than an intrinsic property of the enzyme. Active-site bound pyridoxal phosphate continues to behave as a pH indicator; nevertheless, the pK value of the single crystals is a pH unit (pK=7.15) higher than that in solution. This variation is interpreted as indication of a difference in the environment of the chromophore between the crystal and solution states. While the environmental difference does not significantly alter the affinity for substrates, it could account for the reduced rates in transformation of the enzyme-substrate complexes in half-transamination reactions in the crystalline state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...