ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A three m diameter by three m long corrugated cylindrical shell with external stiffening rings was tested to failure by buckling. The corrugation geometry for the graphite epoxy composite cylinder wall was optimized to withstand a compressive load producing an ultimate load intensity of 157.6 kN/m without buckling. The test method used to produce the design load intensity was to mount the specimen as a cantilevered cylinder and apply a pure bending moment to the end. A load introduction problem with the specimen was solved by using the BOSOR 4 shell of revolution computer code to analyze the shell and attached loading fixtures. The cylinder test loading achieved was 101 percent of design ultimate, and the resulting mass per unit of shell wall area was 1.96 kg/sq m.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TP-2032 , L-14659 , NAS 1.60:2032
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Flat corrugated graphite-epoxy panels were tested in compression to verify selected design details of a ring-stiffened cylinder that was designed to support an axial compressive load of 157.6 kN/m without buckling. Three different sizes of subcomponent panels, with the same basic corrugation geometry, were tested: (1) 60.96-cm-long by 45.72-cm-wide panels to evaluate the local buckling strength of the shell wall design; (2) 91.44-cm-long by 45.72-cm-wide panels to evaluate a longitudinal joint and the load-introduction method; and (3) 254.0-cm-long by 91.44-cm-wide panels with four simulated-ring stiffeners to evaluate the ring-attachment method. The test results indicate that the modified shell-wall design, the longitudinal joint, the load-introduction method, and the stiffener-attachment method for the proposed cylinder have adequate strength to support the design load.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TP-1981 , L-14795 , NAS 1.60:1981
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...