ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 135 (1980), S. 259-268 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Some insects stridulate when attacked by a predator. This behavior has been interpreted as a defensive response, the sound being a warning to predators of the insect's noxiousness. Since to humans many such disturbance sounds are audibly similar, it is possible that they may in fact be mutually mimetic. This idea was investigated through analysis of the temporal and spectral characteristics of the disturbance sounds of a variety of insects that stridulate by a file- and -scraper device. Properties of both the airborne sound and the underlying cuticular vibration (detected by a special vibration measuring instrument) were examined, and four characteristic features found: 1. The temporal pattern is simple. Bursts of toothstrike impulses are about 80 ms long, and are separated by pauses about 90 ms long. Bursts occur at a rate of about 5 to 10/s. 2. The temporal pattern is irregular. For toothstrike interval, burst duration, pause duration and interburst interval, the standard deviation is usually 〉30% of the mean. Much of the irregularity is presumably caused by the insect struggling at the same time it stridulates. Some insects show less variability, and these appear to lack tight coupling between stridulatory movements and struggling movements, so struggling does not interfere with stridulation. 3. The airborne sound pressure waveform is impulsive. The frequency coverage of the sounds is quite broad with an average 10-dB bandwidth of about 40 kHz centered at 25 kHz. The sounds are not intense, ranging from about 10 to 60 dB (re 20×10−6 Pa) at 10 cm. 4. The cuticular vibration waveform is sharply peaked and contains maximum energy at a frequency determined by the tooth-strike rate, usually about 1 kHz. The average decrease in power above this frequency is about 12 dB/octave. The maximum peak-to-peak amplitude of cuticular motion is about 1 to 10 μm. These common characteristics may lead predators to treat insects producing disturbance sounds similarly, although this possibility should be tested empirically. If acoustic mimicry exists, the communicatory interchange between predator and prey may be subtler than is commonly appreciated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1980-09-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...