ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (27)
  • Cells, Cultured  (25)
  • American Association for the Advancement of Science (AAAS)  (52)
  • American Chemical Society
  • American Institute of Physics
  • American Society of Hematology
  • Nature Publishing Group
  • PANGAEA
  • 2010-2014
  • 1990-1994  (42)
  • 1980-1984  (10)
  • 1940-1944
  • 1994  (22)
  • 1990  (20)
  • 1980  (10)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (52)
  • American Chemical Society
  • American Institute of Physics
  • American Society of Hematology
  • Nature Publishing Group
  • +
Years
  • 2010-2014
  • 1990-1994  (42)
  • 1980-1984  (10)
  • 1940-1944
Year
  • 1
    Publication Date: 1990-08-03
    Description: A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, J -- Neidhart, D J -- VanDrie, J -- Kempf, D J -- Wang, X C -- Norbeck, D W -- Plattner, J J -- Rittenhouse, J W -- Turon, M -- Wideburg, N -- AI 27220/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):527-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer-Assisted Molecular Design, Abbott Laboratories, Abbott Park, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Drug Design ; Endopeptidases/*metabolism ; Gene Products, pol/*metabolism ; HIV Protease ; HIV-1/*enzymology ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protease Inhibitors/*pharmacology ; Protein Conformation ; Sugar Alcohols/*pharmacology ; Valine/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-21
    Description: Collagenase is a zinc-dependent endoproteinase and is a member of the matrix metalloproteinase (MMP) family of enzymes. The MMPs participate in connective tissue remodeling events and aberrant regulation has been associated with several pathologies. The 2.4 angstrom resolution structure of the inhibited enzyme revealed that, in addition to the catalytic zinc, there is a second zinc ion and a calcium ion which play a major role in stabilizing the tertiary structure of collagenase. Despite scant sequence homology, collagenase shares structural homology with two other endoproteinases, bacterial thermolysin and crayfish astacin. The detailed description of protein-inhibitor interactions present in the structure will aid in the design of compounds that selectively inhibit individual members of the MMP family. Such inhibitors will be useful in examining the function of MMPs in pathological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lovejoy, B -- Cleasby, A -- Hassell, A M -- Longley, K -- Luther, M A -- Weigl, D -- McGeehan, G -- McElroy, A B -- Drewry, D -- Lambert, M H -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):375-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Glaxo Research Institute, Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278810" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/metabolism ; Collagenases/*chemistry/metabolism ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Matrix Metalloproteinase 8 ; Matrix Metalloproteinase Inhibitors ; Metalloendopeptidases/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermolysin/chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-09-02
    Description: A family of uniform periodic polypeptides has been prepared by bacterial expression of the corresponding artificial genes, with the objective of exploring the potential for control of supramolecular organization in genetically engineered protein-based polymeric materials. The repeating units of the polypeptides consist of oligomeric alanyl-glycine sequences interspersed with glutamic acid residues inserted at intervals of 8 to 14 amino acids. Crystallization of such materials from formic acid produces beta-sheet structures in the solid state, as shown by vibrational spectroscopy, nuclear magnetic resonance spectroscopy, and wide-angle x-ray diffraction. The diffraction results, together with observations from electron microscopy, are consistent with the formation of needle-shaped lamellar crystals whose thickness is controlled by the periodicity of the primary sequence. These results can be used to control solid-state structure in macromolecular materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krejchi, M T -- Atkins, E D -- Waddon, A J -- Fournier, M J -- Mason, T L -- Tirrell, D A -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1427-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Polymer Science and Engineering, University of Massachusetts, Amherst 01003.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073284" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Computer Simulation ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemistry ; *Protein Engineering ; *Protein Structure, Secondary ; Recombinant Proteins/*chemistry/ultrastructure ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-10-07
    Description: Para-hydroxybenzoate hydroxylase inserts oxygen into substrates by means of the labile intermediate, flavin C(4a)-hydroperoxide. This reaction requires transient isolation of the flavin and substrate from the bulk solvent. Previous crystal structures have revealed the position of the substrate para-hydroxybenzoate during oxygenation but not how it enters the active site. In this study, enzyme structures with the flavin ring displaced relative to the protein were determined, and it was established that these or similar flavin conformations also occur in solution. Movement of the flavin appears to be essential for the translocation of substrates and products into the solvent-shielded active site during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatti, D L -- Palfey, B A -- Lah, M S -- Entsch, B -- Massey, V -- Ballou, D P -- Ludwig, M L -- GM 11106/GM/NIGMS NIH HHS/ -- GM 16429/GM/NIGMS NIH HHS/ -- GM 20877/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):110-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939628" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoate 4-Monooxygenase ; Binding Sites ; Catalysis ; Computer Graphics ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/*chemistry/metabolism ; Hydrogen Bonding ; Mixed Function Oxygenases/*chemistry/metabolism ; Models, Molecular ; Molecular Conformation ; Oxidation-Reduction ; Parabens/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: Retinotopic map development in nonmammalian vertebrates appears to be controlled by molecules that guide or restrict retinal axons to correct locations in their targets. However, the retinotopic map in the superior colliculus (SC) of the rat is developed instead by a topographic bias in collateral branching and arborization. Temporal retinal axons extending across alternating membranes from the topographically correct rostral SC or the incorrect caudal SC of embryonic rats preferentially branch on rostral membranes. Branching preference is due to an inhibitory phosphatidylinositol-linked molecule in the caudal SC. Thus, position-encoding membrane-bound molecules may establish retinotopic maps in mammals by regulating axon branching, not by directing axon growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roskies, A L -- O'Leary, D D -- NEI RO1 EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):799-803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Carbocyanines ; Cells, Cultured ; Embryonic and Fetal Development/physiology ; Fluorescent Dyes ; Phosphatidylinositol Diacylglycerol-Lyase ; Phosphoric Diester Hydrolases ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/*physiology ; Superior Colliculi/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1980-11-07
    Description: An analog of luteinizing hormone-releasing hormone containing a gamma-lactam as a conformational constraint has been prepared with the use of a novel cyclization of a methionine sulfonium salt. The analog is more active as a luteinizing hormone-releasing hormone agonist that the parent hormone, and provides evidence for a bioactive conformation containing a beta-turn.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freidinger, R M -- Veber, D F -- Perlow, D S -- Brooks, J R -- Saperstein, R -- New York, N.Y. -- Science. 1980 Nov 7;210(4470):656-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7001627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Assay ; Cells, Cultured ; Female ; *Gonadotropin-Releasing Hormone/analogs & derivatives ; Hydrogen Bonding ; Lactams ; Protein Conformation ; Rats ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-08-17
    Description: The transcription factor C/EBP uses a bipartite structural motif to bind DNA. Two protein chains dimerize through a set of amphipathic alpha helices termed the leucine zipper. Highly basic polypeptide regions emerge from the zipper to form a linked set of DNA contact surfaces. In the recently proposed a "scissors grip" model, the paired set of basic regions begin DNA contact at a central point and track in opposite directions along the major groove, forming a molecular clamp around DNA. This model predicts that C/EBP must undertake significant changes in protein conformation as it binds and releases DNA. The basic region of ligand-free C/EBP is highly sensitive to protease digestion. Pronounced resistance to proteolysis occurred when C/EBP associated with its specific DNA substrate. Sequencing of discrete proteolytic fragments showed that prominent sites for proteolysis occur at two junction points predicted by the "scissors grip" model. One junction corresponds to the cleft where the basic regions emerge from the leucine zipper. The other corresponds to a localized nonhelical segment that has been hypothesized to contain an N-cap and facilitate the sharp angulation necessary for the basic region to track continuously in the major groove of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuman, J D -- Vinson, C R -- McKnight, S L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2202050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Chromatography, High Pressure Liquid ; DNA/*metabolism ; DNA-Binding Proteins/metabolism ; Kinetics ; Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Peptide Fragments/metabolism ; Peptide Hydrolases/*metabolism ; Protein Conformation ; Transcription Factors/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-08-24
    Description: The protein Felix was designed de novo to fold into an antiparallel four-helix bundle of specific topology. Its sequence of 79 amino acid residues is not homologous to any known protein sequence, but is "native-like" in that it is nonrepetitive and contains 19 of the 20 naturally occurring amino acids. Felix has been expressed from a synthetic gene cloned in Escherichia coli, and the protein has been purified to homogeneity. Physical characterization of the purified protein indicates that Felix (i) is monomeric in solution, (ii) is predominantly alpha-helical, (iii) contains a designed intramolecular disulfide bond linking the first and fourth helices, and (iv) buries its single tryptophan in an apolar environment and probably in close proximity with the disulfide bond. These physical properties rule out several alternative structures and indicate that Felix indeed folds into approximately the designed three-dimensional structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hecht, M H -- Richardson, J S -- Richardson, D C -- Ogden, R C -- New York, N.Y. -- Science. 1990 Aug 24;249(4971):884-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2392678" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Base Sequence ; DNA/genetics ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Denaturation ; *Proteins ; *Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, D C -- He, X M -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):302-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, AL 35812.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374930" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Models, Molecular ; Protein Conformation ; *Serum Albumin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is an example of a ubiquitous class of enzymes that are regulated by covalent modification. In the three-dimensional structure of the enzyme-substrate complex, isocitrate forms a hydrogen bond with Ser113, the site of regulatory phosphorylation. The structures of Asp113 and Glu113 mutants, which mimic the inactivation of the enzyme by phosphorylation, show minimal conformational changes from wild type, as in the phosphorylated enzyme. Calculations based on observed structures suggest that the change in electrostatic potential when a negative charge is introduced either by phosporylation or site-directed mutagenesis is sufficient to inactivate the enzyme. Thus, direct interaction at a ligand binding site is an alternative mechanism to induced conformational changes from an allosteric site in the regulation of protein activity by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Dean, A M -- Sohl, J L -- Koshland, D E Jr -- Stroud, R M -- GM 24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1012-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Homeostasis ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...