ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Cambridge University Press  (3)
  • Oxford University Press
  • Springer Nature
  • 2005-2009
  • 1990-1994
  • 1980-1984  (3)
  • 1983  (1)
  • 1980  (2)
  • Geography  (3)
Collection
  • Articles  (3)
Years
  • 2005-2009
  • 1990-1994
  • 1980-1984  (3)
Year
  • 1
    Publication Date: 1983-05-01
    Description: The Trego Hot Springs tephra bed is a silicic tephra about 23,400 yr old, found at several localities in pluvial lake sediments in northern Nevada, southern Oregon, and northeastern California. It has been characterized petrographically, by the major and minor element chemistry of its glass, and by its stratigraphic position with respect to other tephra layers. At a newly described locality on Squaw Creek, northwest of Gerlach, Nevada, at the north end of the Smoke Creek Desert, Trego Hot Springs tephra has been found in sediments of the Sehoo and Indian Lakes formations. The depositional environments of these sediments show that when the tephra fell, pluvial Lake Lahontan stood between 1256 and 1260 m, and that immediately thereafter the lake rose to at least 1275 m. These data corroborate earlier findings by Benson (Quaternary Research9, 300–318) from radiometric dating of calcareous tufa. However, the Lake Lahontan area has been affected by isostatic subsidence and rebound in response to changing water loads, so that caution is required in the use of lakeshore elevations in correlation.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1980-11-01
    Description: Research has demonstrated that leaf physiognomy is representative of the local or microclimate conditions under which plants grow. The physiognomy of leaf samples from Oregon, Michigan, Missouri, Tennessee, and the Panama Canal Zone has been related to the microclimate using Walter diagrams and Thornthwaite water-budget data. A technique to aid paleoclimatologists in identifying the nature of the microclimate from leaf physiognomy utilizes statistical procedures to classify leaf samples into one of six microclimate regimes based on leaf physiognomy information available from fossilized samples.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1980-09-01
    Description: Stratigraphic studies of pollen and macrofossils from six sites at different elevations in the White Mountains of New Hampshire demonstrate changes in the distributions of four coniferous tree species during the Holocene. Two species presently confined to low elevations extended farther up the mountain slopes during the early Holocene: white pine grew 350 m above its present limit beginning 9000 yr B.P., while hemlock grew 300–400 m above its present limit soon after the species immigrated to the region 7000 yr. B.P. Hemlock disappeared from the highest sites about 5000 yr B.P., but both species persisted at sites 50–350 m above their present limits until the Little Ice Age began a few centuries ago. The history of the two main high-elevation conifers is more difficult to interpret. Spruce and fir first occur near their present upper limits 9000 or 10,000 yr B.P. Fir persisted in abundance at elevations similar to those where it occurs today throughout the Holocene, while spruce became infrequent at all elevations from the beginning of the Holocene until 2000 yr B.P. These facts suggest a more complex series of changes than a mere upward shift of the modern environmental gradient. Nevertheless, we conclude that the minimum climatic change which would explain the upward extensions of hemlock and white pine is a rise in temperature, perhaps as much as 2°C. The interval of maximum warmth started 9000 yr B.P. and lasted at least until 5000 yr B.P., correlative with the Prairie Period in Minnesota.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...