ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering  (9)
  • EARTH RESOURCES AND REMOTE SENSING  (5)
  • 1975-1979  (14)
  • 1978  (14)
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 24 (1978), S. 559-560 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 24 (1978), S. 1046-1054 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of combined forced and free convection on the performance of a reverse osmosis system in a horizontal circular pipe is examined. The free convective motion, which is superimposed upon the main axial flow, is caused by buoyancy forces arising from the buildup of a dense solute boundary layer near the membrane surface. The three-dimensional convective diffusion problem is solved by dividing it into a perturbation part accounting for the buoyancy effects present for Ra ≠ 0 and a nonperturbation part for the intrinsic convective flow pattern present even when Ra = 0.An approximate solution to the nonperturbation equations is obtained from the literature, and the perturbation equations are solved using a stream function-vorticity scheme valid for high Schmidt numbers. The effects of rejection parameter, Rayleigh number, and pressure parameter on the Sherwood number and concentration polarization are studied. Correlations are developed for the asymptotic Sherwood number and the effective axial length at which free convection becomes significant. The numerical results are in reasonable agreement with limiting analytical solutions and with the experimental asymptotic Sherwood numbers measured by Derzansky and Gill (1974) and Hsieh et al. (1976).
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 699-710 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An experimental study was carried out to gain a better understanding of the dynamic behavior of gas bubbles during the structural foam injection molding operation. For the study, a rectangular mold cavity with glass windows on both sides was constructed, which permitted us to record on a movie film the dynamic behavior of gas bubbles in the mold cavity as a molten polymer containing inert gas was injected into it. The mold was designed so that either isothermal or nonisothermal injection molding could be carried out. Materials used were polystyrene, high-density polyethylene, and polycarbonate. As chemical blowing agents, sodium bicarbonate (which generates carbon dioxide), a proprietary hydrazide and 5-phenyl tetrazole, both generating nitrogen, were used. Injection pressure, injection melt temperature, and mold temperature were varied to investigate the kinetics of bubble growth (and collapse) during the foam injection molding operation. It was found that the processing variables (e.g., the mold temperature, the injection pressure, the concentration of blowing agent) have a profound influence on the nucleation and growth rates of gas bubbles during mold filling. Some specific observations made from the present study are as follows: an increase in melt temperature, blowing agent concentration, and mold temperature brings about an increase in bubble growth but more non-uniform cell size and its distribution, whereas an increase in injection pressure (and hence injection speed) brings about a decrease in bubble growth but more uniform cell size and its distribution. Whereas almost all the theoretical studies published in the literature deal with the growth (or collapse) of a stationary single spherical gas bubble under isothermal conditions, in structural foam injection molding the shape of the bubble is not spherical because the fluid is in motion during mold filling. Moreover, a temperature gradient exists in the mold cavity and the cooling subsequent to mold filling influences bubble growth significantly. It is suggested that theoretical study be carried out on bubble growth in an imposed shear field under nonisothermal conditions.
    Additional Material: 28 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 350-354 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The relationship between synthesis factors and the impact resistance of high impact polystyrene (HIPS) is investigated in the light of its morphology and dynamic mechanical properties. A decrease in polymerization temperature results in an increase in Tg, melt viscosity and molecular weight of the continuous polystyrene phase as characterized by gel permeation chromatography. The separated, occluded polystyrene phase however shows an invariant Tg suggesting that the grafting and/or crosslinking effect overweighs the molecular weight effect. The observed high impact strength has been correlated with the homogeneous 1-2 μ rubber particle size distribution, a comparatively sharp rubber Tg transition at lower temperature, and a much lower occluded polystyrene content in the dispersed phase.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 687-698 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An experimental study was carried out to investigate the flow behavior of gas-charged molten polymers in foam extrusion. For the study, a rectangular slit die with glass windows was constructed to permit visual observations, from the direction perpendicular to flow, of the dynamic behavior of gas bubbles when a gas-charged molten polymer flows between two parallel planes. Pictures were taken of gas bubbles in the flow channel with the aid of a camera attached to a microscope, and these were later used to determine the position at which gas bubbles start to grow. Using three melt pressure transducers mounted on the short side of the rectangular slot, pressure distributions were measured along the longitudinal centerline of the die. The polymeric materials used were high-density polyethylene and polystyrene, and the chemical blowing agents used were a proprietary hydrazide which generates nitrogen, and sodium bicarbonate which generates carbon dioxide. It was observed that the gas-charged molten polymer shows a curved pressure profile as the melt approaches the die exit, whereas the polymer without a blowing agent shows a linear pressure profile. The visual observations of the bubble growth in the flow channel, together with the pressure measurements, permitted us to determine the bubble inflation pressure, often referred to as the critical pressure for bubble inflation. It was found that the critical pressure decreases with increasing melt extrusion temperature, and increases with increasing blowing agent concentration. It was also found that the bulk viscosity of gas-charged molten polymers decreases with increasing blowing agent concentration and with increasing melt temperature. A general remark is made concerning the precaution one should take when an Instron rheometer is used for determining the bulk viscosity of gas-charged molten polymers.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 180-186 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An experimental study was carried out to investigate the phenomenon of interfacial instability in multilayer flat-film coextrusion. For the study, a sheet-forming die with a feed block was used to coextrude three-and five-layer flat films. Polymers coextruded were: (a) low-density polyethylene with polystyrene, and (b) high-density polyethylene with polystyrene. It was observed that, for a given polymer system, there is a critical value of wall shear stress at which an irregular (i.e., unstable) interface between the layers sets in, giving rise to a pattern similar to that usually found in a wood panel. Once the instability sets in, the severity of interfacial instability is found to depend on both the total volumetric flow rate (hence wall shear stress) of the combined streams and the ratio of the individual layer thicknesses. An attempt is made to correlate the critical conditions for the onset of interfacial instability in terms of the layer thickness ratio, and the viscosity and elasticity ratios of the two polymers being coextruded.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 932-936 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of glass fibers and some fire retardant additives on the kinetics and mechanism of crystallization of poly(butylene terephthalate) (PBT) has been investigated. Shorter half times of crystallization and higher optimum crystallization temperatures of the filled samples are attributed to the nucleating ability of the additives. Based on the percent crystallinity determined, the efficiency of the different quenching media studied can be arranged in the order: ice water 〉 25°C water ≥ dry ice/ethanol 〉 liquid nitrogen. The inefficient quenching of dry ice/ethanol arid liquid nitrogen media is attributed to their poor heat transfer. The Tg of these quenched samples is, however, independent of the percent crystallinity.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 1019-1029 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Wire coating extrusion was studied, both experimentally and theoretically, using a pressure-type die. For the experimental study, a wire coating apparatus of laboratory scale was constructed, consisting of a pay-off device, extruder, cross-head and pressure-type die, cooling trough, and take-up device. The materials used were low- and high-density polyethylenes and thermoplastic rubber. The following measurements were taken during the experiments: (1) the axial pressure profiles in the die, (2) melt flow rate, and (3) take-up speed. The measurements were then used to determine the effect of the rheological properties of the polymers on the performance of the wire coating operation. It was found that a reduction in axial pressure gradient and a reduction in the recoverable elastic strain of a molten polymer at the die exit can be realized as the speed of the wire is increased. For the theoretical study, using a power-law model, the equations of motion were solved numerically to predict the volumetric flow rate as functions of the pressure gradient in the die and the rheological properties of the polymer being extruded. Solution of the system equations permitted us to predict the velocity profile and shear stress distributions of a molten polymer inside a pressure-type wire coating die.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 187-199 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Multilayer blown film coextrusion was studied, both experimentally and theoretically. For the experimental study, an annular die with a feed-port system was designed and multilayer blown films were produced by rotating the inner mandrel with a one horsepower variable-speed drive at speeds from nearly 2 to 6 rpm, and by inflating the tubular molten film with air. The die has 16 feed slots and melt pressure transducers are mounted along the axial direction of the outer wall of the annular flow channel. The transducers were used to determine the pressure gradient in the annular flow channel, which then permitted determination of the reduction in pressure drop when different combinations of two polymer systems were coextruded. Polymers used for b own film coextrusion were: (1) low-density polyethylene with ethylene-vinyl acetate; (2) low-density polyethylene with high-density polyethylene; (3) low-density polyethylene with polypropylene; (4) high-density polyethylene with ethylene-vinyl acetate. For the theoretical study, stratified helical flow was analyzed using a power-law non-Newtonian model. A computational procedure was developed to predict the number of layers, layer thickness, and the volumetric flow rate as functions of certain processing variables (namely, the pressure drop in the die, and the angular speed of rotation of the inner mandrel of the die) and the rheological parameters of the individual polymers concerned. Comparison was made of the theoretical prediction of volumetric flow rate with experimental ones. Some representative results are presented of the theoretically predicted axial and angular velocity distributions, shear stress profiles, and shear rate profiles.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: The radiative transfer equation was solved using a modified Schuster-Schwartzschild approximation to obtain an expression for the solar reflectance of a snow field. The parameters in the reflectance formula are the single scattering albedo and the fraction of energy scattered in the backward direction. The single scattering albedo is calculated from the crystal size using a geometrical optics formula and the fraction of energy scattered in the backward direction is calculated from the Mie scattering theory. Numerical results for reflectance are obtained for visible and near infrared radiation for different snow conditions. Good agreement was found with the whole spectral range. The calculation also shows the observed effect of aging on the snow reflectance.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-78085
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...