ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data  (2)
  • Elsevier  (2)
  • Springer Nature
  • 2010-2014  (2)
  • 1980-1984
  • 1975-1979
  • 2011  (2)
  • 1978
Collection
Years
  • 2010-2014  (2)
  • 1980-1984
  • 1975-1979
Year
  • 2011  (2)
  • 1978
  • 1
    Publication Date: 2017-04-04
    Description: The significant amounts of selenium(Se)emitted by volcanoesmay have important impact on human health due to the narrow range between nutrition requirement and toxic effects for living organisms upon Se exposure. Although soils play a key role in determining the level in food and water and thereby human health, little is known about the behaviour of Se in volcanic soils. In this work we evaluated the Se release during rainwater–soil interaction under controlled conditions using soils collected on the flanks of Etna volcano and synthetic rain. Seleniumconcentrations in soil leachate solutions displayed a spatial distribution, which cannot be explained by plume deposition, total Se soil concentrations or the presence of Fe oxides. Instead, Al compounds and to a minor extent SOM were identified as the active phases controlling the selenate mobilization during interaction with sulphate-containing rainwater. This shows the importance of soils as reactive interfaces. Selenium is mobilized when volcanic-derived acid rain interacts with poorly developed soils close to the crater. This geogenic process might influence the chemical composition of groundwater and as a result, human health.
    Description: Published
    Description: 235–244
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Selenium ; Volcanic soils ; Geogenic ; Volcanoes ; Contamination ; Groundwater ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5–50 lg m 3). Minor and trace element concentrations ranged from about 0.001 to 1 lg m 3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a 1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a 1 (Al, Fe, Si) to 0.01–0.1 t a 1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.
    Description: Published
    Description: 7401-7425
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: trace elements ; volcanic plume chemistry ; bulk deposition ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...