ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • National Academy of Sciences  (2)
  • 2015-2019  (2)
  • 1995-1999
  • 1975-1979
  • 2018  (2)
  • 1976
  • 1
    Publication Date: 2018-07-23
    Description: Abnormal modifications to mutant superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS). Misfolding of wild-type SOD1 (SOD1WT) is also observed in postmortem tissue of a subset of sporadic ALS (sALS) cases, but cellular and molecular mechanisms generating abnormal SOD1WT species are unknown. We analyzed aberrant human SOD1WT species over the lifetime of transgenic mice and found the accumulation of disulfide–cross-linked high–molecular-weight SOD1WT aggregates during aging. Subcellular fractionation of spinal cord tissue and protein overexpression in NSC-34 motoneuron-like cells revealed that endoplasmic reticulum (ER) localization favors oxidation and disulfide-dependent aggregation of SOD1WT. We established a pharmacological paradigm of chronic ER stress in vivo, which recapitulated SOD1WTaggregation in young transgenic mice. These species were soluble in nondenaturing detergents and did not react with a SOD1 conformation-specific antibody. Interestingly, SOD1WT aggregation under ER stress correlated with astrocyte activation in the spinal cord of transgenic mice. Finally, the disulfide–cross-linked SOD1WT species were also found augmented in spinal cord tissue of sALS patients, correlating with the presence of ER stress markers. Overall, this study suggests that ER stress increases the susceptibility of SOD1WT to aggregate during aging, operating as a possible risk factor for developing ALS.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-27
    Description: Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...