ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ENERGY PRODUCTION AND CONVERSION  (1)
  • Ultrastructure  (1)
  • 2000-2004
  • 1990-1994  (1)
  • 1975-1979  (1)
  • 1992  (1)
  • 1976  (1)
Collection
Keywords
Publisher
Years
  • 2000-2004
  • 1990-1994  (1)
  • 1975-1979  (1)
Year
  • 1
    ISSN: 1432-2048
    Keywords: Bradyrhizobium ; Electron microscopy ; Glycine (root nodules) ; High-pressure freezing ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract High-pressure freezing of chemically untreated nodules of soybean (Glycine max (L.) Merr.), in sharp contrast to chemical fixation and prefixation, appears to preserve the ultrastructure close to the native state. This is supported by the observation that the peribacteroid membrane of high-pressure-frozen samples is tightly wrapped around the bacteroids, a finding that is fully consistent with the current views on the physiology of oxygen and metabolite transport between plant cytosol and bacteroids. In soybean root nodules, the plant tissue and the enclosed bacteria are so dissimilar that conventional aldehyde-fixation procedures are unable to preserve the overall native ultrastructure. This was demonstrated by high-pressure freezing of nodules that had been pre-fixed in glutaraldehyde at various buffer molalities: no buffer strength tested preserved all ultrastructural aspects that could be seen after high-pressure freezing of chemically untreated nodules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: A new energy storage system (the mechanical capacitor), using a spokeless magnetically levitated composite ring rotor, is described and design formulas for sizing the components are presented. This new system is configured around a permanent magnet (flux biased) suspension which has active servo control in the radial direction and passive control in the axial direction. The storage ring is used as a moving rotor and electronic commutation of the stationary armature coils is proposed. There is no mechanical contact with the rotating spokeless ring; therefore, long life and near zero rundown losses are projected. A 7-kW h system is sized to demonstrate feasibility. A literature review of flywheel energy storage systems is also presented and general formulas are developed for comparing rotor geometries.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-TN-D-8185 , G-7639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...