ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Immunocytochemistry  (3)
  • 1990-1994  (3)
  • 1970-1974
  • 1994  (3)
  • 1970
  • 1
    ISSN: 1432-0878
    Keywords: Key words: C-PON ; Neuropeptide Y ; Neostriatum ; Immunocytochemistry ; Ultrastructure ; Erinaceus europaeus (Insectivora)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The present study provides light- and electron-microscopic immunocytochemical data on the presence of neurons that are immunoreactive to the C-terminal flanking peptide of neuropeptide Y, C-PON, in the neostriatum of the hedgehog (Erinaceus europaeus). Positive neurons have mostly fusiform or round perikarya from which two to four poorly branched processes arise. Immunostained fibers and puncta are also evenly distributed throughout the neostriatum. Ultrastructurally, each neuron exhibits a deeply invaginated nucleus surrounded by abundant cytoplasm with a well-developed rough endoplasmic reticulum and Golgi apparatus. Positive neurons receive symmetric and asymmetric synapses from unlabeled terminals. The results of this study can be correlated with previous findings, as the C-PON-positive neurons of the hedgehog resemble medium-sized neostriatal neurons that are known to be local circuit neurons exhibiting C-PON in the rat. Thus, a high degree of C-PON neuronal system phylogenetic conservation and function can be postulated for the neostriatum of mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: C-PON ; Neuropeptide Y ; Neostriatum ; Immunocytochemistry ; Ultrastructure ; Erinaceus europaeus (Insectivora)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The present study provides light- and electronmicroscopic immunocytochemical data on the presence of neurons that are immunoreactive to the C-terminal flanking peptide of neuropeptide Y, C-PON, in the neostriatum of the hedgehog (Erinaceus europaeus). Positive neurons have mostly fusiform or round perikarya from which two to four poorly branched processes arise. Immunostained fibers and puncta are also evenly distributed throughout the neostriatum. Ultrastructurally, each neuron exhibits a deeply invaginated nucleus surrounded by abundant cytoplasm with a well-developed rought endoplasmic reticulum and Golgi apparatus. Positive neurons receive symmetric and asymmetric synapses from unlabeled terminals. The results of this study can be correlated with previous findings, as the C-PON-positive neurons of the hedgehog resemble medium-sized neostriatal neurons that are known to be local circuit neurons exhibiting C-PON in the rat. Thus, a high degree of C-PON neuronal system phylogenetic conservation and function can be postulated for the neostriatum of mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Nitric oxide synthase ; Nervous system ; Gut ; Endocrine cells ; Immunocytochemistry ; Marthasterias glacialis (Echinodermata)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The neuroendocrine system of the starfish Marthasterias glacialis was investigated immunocytochemically using antisera specific for rat neuronal, bovine aortic endothelial, and mouse macrophage, nitric oxide (NO) synthases. Immunoreactivity was detected only with the antibodies specific for the neural enzyme, in the ectoneural and hyponeural tissues of the radial nerve cords and in the basiepithelial plexus and endocrine cells of the digestive tract. The pyloric stomach showed more immunoreactive structures than the other digestive organs, with the rectal caeca showing the least activity. Immunoreactive endocrine cells were located in the cardiac and pyloric stomachs and in the pyloric caeca. Co-localization of the enzyme immunoreactivity, and the staining for NADPH-diaphorase, demonstrate the presence of NO synthase in echinoderms. These results provide further evidence that NO is a neuronal messenger of early phylogenetic origin which has been conserved throughout evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...