ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2017-10-05
    Beschreibung: We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-03-28
    Beschreibung: We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on the glacier affects extensional stress at the grounding line, and as a result, the flux through the grounding line. Lateral drag in turn is affected by the length of the floating ice shelf when the latter is present, and therefore by calving. Using two calving laws, one due to Nick et al based on a model for crevasse propagation due to hydrofracture, and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier, and to the specifics of the calving law used.
    Print ISSN: 1994-0432
    Digitale ISSN: 1994-0440
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-06-27
    Beschreibung: Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice-ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice-shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. The two-dimensional melt rate fields provided by the model reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a−1 for cold sub-shelf cavities, for example underneath Ross or Ronne ice shelves, to 12 m a−1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally-feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.
    Print ISSN: 1994-0432
    Digitale ISSN: 1994-0440
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-08-04
    Beschreibung: We present a full PSHA sensitivity analysis for two sites in southern Israel – one in the near-field of a major fault system and one farther away. The PSHA analysis is conducted for alternative source representations, using alternative model parameters for the main seismic sources, such as slip-rate and Mmax, among others. The analysis also considers the effect of the Ground-Motion Prediction Equation (GMPE) on the hazard results. In this way, the two types of epistemic uncertainty – modelling uncertainty and parametric uncertainty are treated and addressed. We quantify the uncertainty propagation by testing its influence of the final calculated hazard, such that the controlling knowledge gaps are identified and can be treated in future studies. We find that current practice in Israel, as represented by the most current version of the building code grossly underestimates the hazard, due to a combination of factors, including source definitions as well as the GMPE used for analysis.
    Digitale ISSN: 2195-9269
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...