ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Carboxydotrophic bacteria  (2)
  • Springer  (2)
  • American Chemical Society
  • 1990-1994  (1)
  • 1980-1984  (1)
  • 1975-1979
  • 1950-1954
  • 1945-1949
  • 1880-1889
  • 1993
  • 1990  (1)
  • 1983  (1)
  • 1954
Collection
  • Articles  (2)
Publisher
  • Springer  (2)
  • American Chemical Society
Years
  • 1990-1994  (1)
  • 1980-1984  (1)
  • 1975-1979
  • 1950-1954
  • 1945-1949
  • +
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 154 (1990), S. 168-174 
    ISSN: 1432-072X
    Keywords: CO ; Nitrite ; Nitrous oxide ; Nitrogen assimilation ; Carboxydotrophic bacteria ; Pseudomonas carboxydoflava ; Pseudomonas carboxydohydrogena ; Pseudomonas carboxydovorans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We describe the ability of carboxydotrophic bacteria for nitrate respiration or denitrification. Four out of fourteen strains examined could denitrify heterotrophically forming N2 (Pseudomonas carboxydoflava) or N2O (Pseudomonas carboxydohydrogena, Pseudomonas compransoris, and Pseudomonas gazotropha). Three carried out a heterotrophic nitrate respiration (Arthrobacter 11/x, Azomonas B1, and Azomonas C2). P. carboxydohydrogena could use H2 as electron donor for nitrate respiration under chemolithoautotrophic growth conditions. CO did not support denitrification or nitrate respiration of carboxydotrophic bacteria, although the free energy changes of the reactions would be sufficiently negative to allow growth. CO at 50 kPa was a weak inhibitor of N2O-reduction in carboxydotrophic and non-carboxydotrophic bacteria and decelerated denitrifying growth. Carboxydotrophic bacteria could utilize a wide range of N-sources. Results obtained with a plasmid-cured mutant of Pseudomonas carboxydovorans OM5 showed, that genes involved in nitrogen assimilation entirely reside on the chromosome. In the presence of an suitable electron donor, most carboxydotrophic bacteria could carry out a reduction of nitrate to nitrite that did not support growth and did not lead to the formation of ammonia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 135 (1983), S. 293-298 
    ISSN: 1432-072X
    Keywords: Carbon monoxide ; Carboxydotrophic bacteria ; Cytochromes ; Electron transport ; CO insensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spectroscopy at room and liquid nitrogen temperatures with extracts of the carbon monoxide-oxidizing bacteria Pseudomonas carboxydovorans, P. carboxydohydrogena, P. carboxydoflava, P. compransoris, Alcaligenes carboxydus, and Arthrobacter 11/x revealed the presence of normal electron transport systems, containing b-, c-, and a-type cytochromes at concentrations that compare to those of other aerobic bacteria. CO did not induce the formation of special CO-insensitive terminal oxidases. The gross composition of the respiratory chains was not affected by the type of growth substrate, and cytochrome d(=a2) was not detected. However, certain b-type cytochromes were only found when CO or H2 + CO2 served as growth substrates. All strains contained at least two different b-type cytochromes. Cytochrome b563 formed a weak CO-complex and was identified as a novel cytochrome o. It functions as CO-insensitive, alternative terminal oxidase in carboxydotrophic bacteria. A soluble CO-binding cytochrome c was present in P. carboxydovorans, P. carboxydohydrogena, and P. carboxydoflava. A CO-binding protoheme compound could be identified as catalase in P. compransoris, P. carboxydovorans, P. carboxydohydrogena, A. carboxydus, and Arthrobacter 11/x. The data are consistent with the presence of branched respiratory chains in the carboxydotrophs examined, and suggest the functioning of both, cytochrome a and the novel cytochrome o as terminal oxidases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...