ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (86)
  • 1995-1999
  • 1990-1994  (86)
  • 1980-1984
  • 1945-1949
  • 1992  (86)
  • 1945
  • 1
    Publication Date: 1992-08-21
    Description: Epidermolytic hyperkeratosis is a hereditary skin disorder characterized by blistering and a marked thickening of the stratum corneum. In one family, affected individuals exhibited a mutation in the highly conserved carboxyl terminal of the rod domain of keratin 1. In two other families, affected individuals had mutations in the highly conserved amino terminal of the rod domain of keratin 10. Structural analysis of these mutations predicts that heterodimer formation would be unaffected, although filament assembly and elongation would be severely compromised. These data imply that an intact keratin intermediate filament network is required for the maintenance of both cellular and tissue integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rothnagel, J A -- Dominey, A M -- Dempsey, L D -- Longley, M A -- Greenhalgh, D A -- Gagne, T A -- Huber, M -- Frenk, E -- Hohl, D -- Roop, D R -- HD25479/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 21;257(5073):1128-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1380725" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/chemistry ; Humans ; Ichthyosiform Erythroderma, Congenital/*genetics ; Keratins/chemistry/*genetics ; Macromolecular Substances ; Molecular Sequence Data ; *Mutation ; Pedigree ; Polymerase Chain Reaction ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-08-14
    Description: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop. This binding motif was used to target the human immunodeficiency virus TAR element, an important viral RNA structure that is the receptor for Tat, the major viral transactivator protein. Oligonucleotides complementary to different halves of the TAR structure bound with greater affinity than molecules designed to bind symmetrically around the hairpin. The pseudo--half-knot--forming oligonucleotides altered the TAR structure so that specific recognition and binding of a Tat-derived peptide was disrupted. This general binding motif may be used to disrupt the structure of regulatory RNA hairpins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ecker, D J -- Vickers, T A -- Bruice, T W -- Freier, S M -- Jenison, R D -- Manoharan, M -- Zounes, M -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ISIS Pharmaceuticals, Carlsbad, CA 92008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502560" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA, Viral/metabolism ; Gene Products, tat/metabolism ; HIV/*genetics ; Kinetics ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Oligoribonucleotides/*chemistry ; RNA, Viral/*chemistry/genetics/metabolism ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-11-13
    Description: Linkage analysis of ten Utah kindreds and one Texas kindred with multiple cases of cutaneous malignant melanoma (CMM) provided evidence that a locus for familial melanoma susceptibility is in the chromosomal region 9p13-p22. The genetic markers analyzed reside in a candidate region on chromosome 9p21, previously implicated by the presence of homozygous deletions in melanoma tumors and by the presence of a germline deletion in an individual with eight independent melanomas. Multipoint linkage analysis was performed between the familial melanoma susceptibility locus (MLM) and two short tandem repeat markers, D9S126 and the interferon-alpha (IFNA) gene, which reside in the region of somatic loss in melanoma tumors. An analysis incorporating a partially penetrant dominant melanoma susceptibility locus places MLM near IFNA and D9S126 with a maximum location score of 12.71. Therefore, the region frequently deleted in melanoma tumors on 9p21 presumably contains a locus that plays a critical role in predisposition to familial melanoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cannon-Albright, L A -- Goldgar, D E -- Meyer, L J -- Lewis, C M -- Anderson, D E -- Fountain, J W -- Hegi, M E -- Wiseman, R W -- Petty, E M -- Bale, A E -- CA 42014/CA/NCI NIH HHS/ -- CA 48711/CA/NCI NIH HHS/ -- RR 00064/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 Nov 13;258(5085):1148-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City 84132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439824" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; Base Sequence ; Child ; Chromosome Aberrations ; *Chromosomes, Human, Pair 9 ; Dysplastic Nevus Syndrome/genetics ; Female ; Genes, Tumor Suppressor ; Genetic Markers ; Humans ; Lod Score ; Male ; Melanoma/*genetics ; Middle Aged ; Molecular Sequence Data ; Pedigree ; Skin Neoplasms/*genetics ; Texas ; Utah
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-10-02
    Description: The 4-kilodalton (39 to 43 amino acids) amyloid beta protein (beta AP), which is deposited as amyloid in the brains of patients with Alzheimer's diseases, is derived from a large protein, the amyloid beta protein precursor (beta APP). Human mononuclear leukemic (K562) cells expressing a beta AP-bearing, carboxyl-terminal beta APP derivative released significant amounts of a soluble 4-kilodalton beta APP derivative essentially identical to the beta AP deposited in Alzheimer's disease. Human neuroblastoma (M17) cells transfected with constructs expressing full-length beta APP and M17 cells expressing only endogenous beta APP also released soluble 4-kilodalton beta AP, and a similar, if not identical, fragment was readily detected in cerebrospinal fluid from individuals with Alzheimer's disease and normal individuals. Thus cells normally produce and release soluble 4-kilodalton beta AP that is essentially identical to the 4-kilodalton beta AP deposited as insoluble amyloid fibrils in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoji, M -- Golde, T E -- Ghiso, J -- Cheung, T T -- Estus, S -- Shaffer, L M -- Cai, X D -- McKay, D M -- Tintner, R -- Frangione, B -- AG05891/AG/NIA NIH HHS/ -- AG06656/AG/NIA NIH HHS/ -- AR02594/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Gunma University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439760" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*cerebrospinal fluid ; Amino Acid Sequence ; Amyloid beta-Peptides/*biosynthesis ; Amyloid beta-Protein Precursor/metabolism ; Animals ; Base Sequence ; Cell Line ; Immunoblotting ; Leukemia, Myeloid/*metabolism ; Molecular Sequence Data ; Neuroblastoma/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-10-02
    Description: A deletion map of the human Y chromosome was constructed by testing 96 individuals with partial Y chromosomes for the presence or absence of many DNA loci. The individuals studied included XX males, XY females, and persons in whom chromosome banding had revealed translocated, deleted, isodicentric, or ring Y chromosomes. Most of the 132 Y chromosomal loci mapped were sequence-tagged sites, detected by means of the polymerase chain reaction. These studies resolved the euchromatic region (short arm, centromere, and proximal long arm) of the Y chromosome into 43 ordered intervals, all defined by naturally occurring chromosomal breakpoints and averaging less than 800 kilobases in length. This deletion map should be useful in identifying Y chromosomal genes, in exploring the origin of chromosomal disorders, and in tracing the evolution of the Y chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vollrath, D -- Foote, S -- Hilton, A -- Brown, L G -- Beer-Romero, P -- Bogan, J S -- Page, D C -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):52-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Whitehead Institute, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439769" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Chromosome Mapping ; Electrophoresis, Polyacrylamide Gel ; Female ; *Gene Deletion ; *Genome, Human ; Humans ; Male ; Molecular Sequence Data ; Polymerase Chain Reaction ; Sequence Tagged Sites ; *Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-07-03
    Description: The messenger RNAs of human immunodeficiency virus-1 (HIV-1) have an RNA hairpin structure, TAR, at their 5' ends that contains a six-nucleotide loop and a three-nucleotide bulge. The conformations of TAR RNA and of TAR with an arginine analog specifically bound at the binding site for the viral protein, Tat, were characterized by nuclear magnetic resonance (NMR) spectroscopy. Upon arginine binding, the bulge changes conformation, and essential nucleotides for binding, U23 and A27.U38, form a base-triple interaction that stabilizes arginine hydrogen bonding to G26 and phosphates. Specificity in the arginine-TAR interaction appears to be derived largely from the structure of the RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puglisi, J D -- Tan, R -- Calnan, B J -- Frankel, A D -- Williamson, J R -- AI29135/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):76-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621097" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*metabolism ; Base Sequence ; Binding Sites ; Gene Products, tat/metabolism ; HIV-1/*genetics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Messenger/*chemistry/metabolism ; RNA, Viral/*chemistry/metabolism ; RNA-Binding Proteins/*chemistry/metabolism ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-10-02
    Description: The human Y chromosome was physically mapped by assembling 196 recombinant DNA clones, each containing a segment of the chromosome, into a single overlapping array. This array included more than 98 percent of the euchromatic portion of the Y chromosome. First, a library of yeast artificial chromosome (YAC) clones was prepared from the genomic DNA of a human XYYYY male. The library was screened to identify clones containing 160 sequence-tagged sites and the map was then constructed from this information. In all, 207 Y-chromosomal DNA loci were assigned to 127 ordered intervals on the basis of their presence or absence in the YAC's, yielding ordered landmarks at an average spacing of 220 kilobases across the euchromatic region. The map reveals that Y-chromosomal genes are scattered among a patchwork of X-homologous, Y-specific repetitive, and single-copy DNA sequences. This map of overlapping clones and ordered, densely spaced markers should accelerate studies of the chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foote, S -- Vollrath, D -- Hilton, A -- Page, D C -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):60-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Whitehead Institute, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1359640" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere ; Cloning, Molecular ; DNA Fingerprinting ; Gene Library ; Genes, Fungal ; *Genome, Human ; Humans ; Male ; Molecular Sequence Data ; Multigene Family ; Polymorphism, Restriction Fragment Length ; Sequence Homology ; Sequence Tagged Sites ; X Chromosome ; *Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-01-24
    Description: The protein encoded by the human testis determining gene, SRY, contains a high mobility group (HMG) box related to that present in the T cell-specific, DNA-binding protein TCF-1. Recombinant SRY protein was able to bind to the same core sequence AACAAAG recognized by TCF-1 in a sequence dependent manner. In five XY females point mutations were found in the region encoding the HMG box. In four cases DNA binding activity of mutant SRY protein was negligible; in the fifth case DNA binding was reduced. These results imply that the DNA binding activity of SRY is required for sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harley, V R -- Jackson, D I -- Hextall, P J -- Hawkins, J R -- Berkovitz, G D -- Sockanathan, S -- Lovell-Badge, R -- Goodfellow, P N -- MC_U117562207/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 1992 Jan 24;255(5043):453-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Molecular Genetics Laboratory, Imperial Cancer Research Fund, London, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1734522" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; DNA-Binding Proteins/*metabolism ; Female ; Gene Expression Regulation ; Humans ; In Vitro Techniques ; Male ; Mice ; Molecular Sequence Data ; *Nuclear Proteins ; Oligonucleotide Probes ; Recombinant Proteins/metabolism ; Sequence Alignment ; Sex-Determining Region Y Protein ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-08-28
    Description: Tentoxin is a naturally occurring phytotoxic peptide that causes seedling chlorosis and arrests growth in sensitive plants and algae. In vitro, it inhibits activity of the beta subunit of the plastid proton-adenosine triphosphatase (ATPase) from sensitive species. Plastid atpB genes from six closely related, tentoxin-sensitive or -resistant Nicotiana species differ at codon 83, according to their response to the toxin: glutamate correlated with resistance and aspartate correlated with sensitivity. The genetic relevance of this site was confirmed in Chlamydomonas reinhardtii by chloroplast transformation. The alga, normally tentoxin-resistant, was rendered tentoxin-sensitive by mutagenesis of its plastid atpB gene at codon 83. Codon 83 may represent a critical site on the beta subunit that does not compete with nucleotide binding or other catalytic activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avni, A -- Anderson, J D -- Holland, N -- Rochaix, J D -- Gromet-Elhanan, Z -- Edelman, M -- New York, N.Y. -- Science. 1992 Aug 28;257(5074):1245-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1387730" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/biosynthesis ; Amino Acid Sequence ; Animals ; Cell Division/drug effects ; Chlamydomonas ; Chloroplasts/*drug effects ; Dose-Response Relationship, Drug ; Drug Resistance/genetics ; Hydrolysis/drug effects ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mycotoxins/*pharmacology ; Peptides, Cyclic/*pharmacology ; Plants, Toxic ; Proton-Translocating ATPases/genetics/*physiology ; Rhodospirillum rubrum ; Sequence Homology, Nucleic Acid ; Tobacco ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-11-20
    Description: The evolutionary relationships of the onychophorans (velvet worms) and the monophyly of the arthropods have generated considerable debate. Cladistic analyses of 12S ribosomal RNA sequences indicate that arthropods are monophyletic and include the onychophorans. Maximum parsimony analyses and monophyly testing within arthropods indicate that myriapods (millipedes and centipedes) form a sister group to all other assemblages, whereas crustaceans (shrimps and lobsters) plus hexapods (insects and allied groups) form a well-supported monophyletic group. Parsimony analysis further suggests that onychophorans form a sister group to chelicerates (spiders and scorpions) and crustaceans plus hexapods, but this relationship is not well supported by monophyly testing. These relationships conflict with current hypotheses of evolutionary pathways within arthropods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ballard, J W -- Olsen, G J -- Faith, D P -- Odgers, W A -- Rowell, D M -- Atkinson, P W -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Entomology, CSIRO, Canberra, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1455227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA, Mitochondrial/*genetics ; Humans ; Invertebrates/*genetics ; Molecular Sequence Data ; Phylogeny ; RNA, Ribosomal/*genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...