ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Time Factors  (19)
  • Protein Conformation  (14)
  • Nature Publishing Group (NPG)  (33)
  • American Association for the Advancement of Science
  • 2005-2009  (33)
  • 1940-1944
  • 2009  (33)
  • 1940
Collection
Publisher
Years
  • 2005-2009  (33)
  • 1940-1944
Year
  • 2009  (33)
  • 1940
  • 2008  (26)
  • 1
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-11
    Description: Infectious prion diseases-scrapie of sheep and chronic wasting disease (CWD) of several species in the deer family-are transmitted naturally within affected host populations. Although several possible sources of contagion have been identified in excretions and secretions from symptomatic animals, the biological importance of these sources in sustaining epidemics remains unclear. Here we show that asymptomatic CWD-infected mule deer (Odocoileus hemionus) excrete CWD prions in their faeces long before they develop clinical signs of prion disease. Intracerebral inoculation of irradiated deer faeces into transgenic mice overexpressing cervid prion protein (PrP) revealed infectivity in 14 of 15 faecal samples collected from five deer at 7-11 months before the onset of neurological disease. Although prion concentrations in deer faeces were considerably lower than in brain tissue from the same deer collected at the end of the disease, the estimated total infectious dose excreted in faeces by an infected deer over the disease course may approximate the total contained in a brain. Prolonged faecal prion excretion by infected deer provides a plausible natural mechanism that might explain the high incidence and efficient horizontal transmission of CWD within deer herds, as well as prion transmission among other susceptible cervids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamguney, Gultekin -- Miller, Michael W -- Wolfe, Lisa L -- Sirochman, Tracey M -- Glidden, David V -- Palmer, Christina -- Lemus, Azucena -- DeArmond, Stephen J -- Prusiner, Stanley B -- AG02132/AG/NIA NIH HHS/ -- P01 AG002132/AG/NIA NIH HHS/ -- P01 AG002132-26/AG/NIA NIH HHS/ -- P01 AG002132-29/AG/NIA NIH HHS/ -- England -- Nature. 2009 Sep 24;461(7263):529-32. doi: 10.1038/nature08289. Epub 2009 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94143 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741608" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Animals ; Biological Assay ; Brain/metabolism ; Deer/*metabolism ; Feces/*chemistry ; Injections, Intraventricular ; Mice ; Mice, Transgenic ; PrPSc Proteins/isolation & purification/*metabolism/*pathogenicity/radiation ; effects ; Time Factors ; Wasting Disease, Chronic/*metabolism/*transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-12
    Description: Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tubbs, Julie L -- Latypov, Vitaly -- Kanugula, Sreenivas -- Butt, Amna -- Melikishvili, Manana -- Kraehenbuehl, Rolf -- Fleck, Oliver -- Marriott, Andrew -- Watson, Amanda J -- Verbeek, Barbara -- McGown, Gail -- Thorncroft, Mary -- Santibanez-Koref, Mauro F -- Millington, Christopher -- Arvai, Andrew S -- Kroeger, Matthew D -- Peterson, Lisa A -- Williams, David M -- Fried, Michael G -- Margison, Geoffrey P -- Pegg, Anthony E -- Tainer, John A -- CA018137/CA/NCI NIH HHS/ -- CA097209/CA/NCI NIH HHS/ -- CA59887/CA/NCI NIH HHS/ -- GM070662/GM/NIGMS NIH HHS/ -- R01 CA059887/CA/NCI NIH HHS/ -- R01 CA059887-12/CA/NCI NIH HHS/ -- R01 CA059887-13/CA/NCI NIH HHS/ -- R01 GM070662/GM/NIGMS NIH HHS/ -- R01 GM070662-01/GM/NIGMS NIH HHS/ -- R01 GM070662-02/GM/NIGMS NIH HHS/ -- R01 GM070662-03/GM/NIGMS NIH HHS/ -- R01 GM070662-04/GM/NIGMS NIH HHS/ -- R01 GM070662-05/GM/NIGMS NIH HHS/ -- R01 GM070662-06/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Jun 11;459(7248):808-13. doi: 10.1038/nature08076.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516334" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/*metabolism ; Alkylation ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Damage ; *DNA Repair ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-06
    Description: Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)-rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry. Here we show in this SIV-macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3alpha (also known as CCL20), plasmacytoid dendritic cells and CCR5(+ )cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4(+) T cells to fuel this obligate expansion. We then show that glycerol monolaurate-a widely used antimicrobial compound with inhibitory activity against the production of MIP-3alpha and other proinflammatory cytokines-can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to block HIV-1 mucosal transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785041/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785041/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Qingsheng -- Estes, Jacob D -- Schlievert, Patrick M -- Duan, Lijie -- Brosnahan, Amanda J -- Southern, Peter J -- Reilly, Cavan S -- Peterson, Marnie L -- Schultz-Darken, Nancy -- Brunner, Kevin G -- Nephew, Karla R -- Pambuccian, Stefan -- Lifson, Jeffrey D -- Carlis, John V -- Haase, Ashley T -- G20 RR022780/RR/NCRR NIH HHS/ -- G20 RR022780-01A1/RR/NCRR NIH HHS/ -- HHSN266200400088C/PHS HHS/ -- N01-CO-12400/CO/NCI NIH HHS/ -- P01 AI066314/AI/NIAID NIH HHS/ -- P01 AI066314-040003/AI/NIAID NIH HHS/ -- P51 RR000167/RR/NCRR NIH HHS/ -- P51 RR000167-440109/RR/NCRR NIH HHS/ -- P51 RR000167-440189/RR/NCRR NIH HHS/ -- P51 RR000167-46S27592/RR/NCRR NIH HHS/ -- R21 AI071976/AI/NIAID NIH HHS/ -- R21 AI071976-02/AI/NIAID NIH HHS/ -- RR020141-01/RR/NCRR NIH HHS/ -- RR15459-01/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1034-8. doi: 10.1038/nature07831. Epub 2009 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Medical School, University of Minnesota, MMC 196, 420 Delaware Street S.E., Minneapolis, Minnesota 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262509" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Animals ; Body Fluids/metabolism/virology ; CD4-Positive T-Lymphocytes/immunology/virology ; Cell Cycle Proteins/metabolism ; Cervix Uteri/drug effects/immunology/virology ; Chemokine CCL20/immunology/metabolism ; Dendritic Cells/immunology/metabolism ; Female ; GPI-Linked Proteins ; Gene Expression Profiling ; HIV-1/physiology ; Interleukin-8/metabolism ; Laurates/*pharmacology ; Macaca mulatta/*virology ; Membrane Proteins/metabolism ; Monoglycerides/*pharmacology ; Mucous Membrane/*drug effects/immunology/*virology ; RNA, Viral/blood ; Receptors, CCR5/immunology/metabolism ; Simian Acquired Immunodeficiency Syndrome/genetics/*prevention & ; control/*transmission/virology ; Simian Immunodeficiency Virus/drug effects/genetics/growth & ; development/physiology ; Time Factors ; Vagina/drug effects/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-10-09
    Description: Recent advances in next generation sequencing have made it possible to precisely characterize all somatic coding mutations that occur during the development and progression of individual cancers. Here we used these approaches to sequence the genomes (〉43-fold coverage) and transcriptomes of an oestrogen-receptor-alpha-positive metastatic lobular breast cancer at depth. We found 32 somatic non-synonymous coding mutations present in the metastasis, and measured the frequency of these somatic mutations in DNA from the primary tumour of the same patient, which arose 9 years earlier. Five of the 32 mutations (in ABCB11, HAUS3, SLC24A4, SNX4 and PALB2) were prevalent in the DNA of the primary tumour removed at diagnosis 9 years earlier, six (in KIF1C, USP28, MYH8, MORC1, KIAA1468 and RNASEH2A) were present at lower frequencies (1-13%), 19 were not detected in the primary tumour, and two were undetermined. The combined analysis of genome and transcriptome data revealed two new RNA-editing events that recode the amino acid sequence of SRP9 and COG3. Taken together, our data show that single nucleotide mutational heterogeneity can be a property of low or intermediate grade primary breast cancers and that significant evolution can occur with disease progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Sohrab P -- Morin, Ryan D -- Khattra, Jaswinder -- Prentice, Leah -- Pugh, Trevor -- Burleigh, Angela -- Delaney, Allen -- Gelmon, Karen -- Guliany, Ryan -- Senz, Janine -- Steidl, Christian -- Holt, Robert A -- Jones, Steven -- Sun, Mark -- Leung, Gillian -- Moore, Richard -- Severson, Tesa -- Taylor, Greg A -- Teschendorff, Andrew E -- Tse, Kane -- Turashvili, Gulisa -- Varhol, Richard -- Warren, Rene L -- Watson, Peter -- Zhao, Yongjun -- Caldas, Carlos -- Huntsman, David -- Hirst, Martin -- Marra, Marco A -- Aparicio, Samuel -- England -- Nature. 2009 Oct 8;461(7265):809-13. doi: 10.1038/nature08489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1L3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812674" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/genetics ; Breast Neoplasms/*genetics/metabolism/*pathology ; DNA Mutational Analysis ; Disease Progression ; Estrogen Receptor alpha/metabolism ; Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Neoplasm/*genetics ; Genome, Human/genetics ; Germ-Line Mutation/genetics ; Humans ; Mutagenesis/*genetics ; Mutation/*genetics ; Neoplasm Metastasis ; Nucleotides/*genetics ; RNA Editing/genetics ; Signal Recognition Particle/genetics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-05-12
    Description: Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697266/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697266/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Gang G -- Song, Jikui -- Wang, Zhanxin -- Dormann, Holger L -- Casadio, Fabio -- Li, Haitao -- Luo, Jun-Li -- Patel, Dinshaw J -- Allis, C David -- K99 CA151683/CA/NCI NIH HHS/ -- R37 GM053512/GM/NIGMS NIH HHS/ -- R37 GM053512-30/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):847-51. doi: 10.1038/nature08036.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19430464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs/genetics/physiology ; Animals ; Cell Transformation, Neoplastic ; Cells, Cultured ; Chromatin/*metabolism ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Genes, Homeobox/genetics ; Hematologic Neoplasms/genetics/*metabolism/*pathology ; Hematopoiesis/genetics ; Hematopoietic Stem Cells/metabolism/pathology ; Histones/chemistry/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics/*metabolism ; Lysine/metabolism ; Magnetic Resonance Spectroscopy ; Methylation ; Mice ; Models, Molecular ; Nuclear Pore Complex Proteins/chemistry/genetics/metabolism ; Oncogene Proteins, Fusion/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Retinoblastoma-Binding Protein 2 ; Transcription, Genetic ; Tumor Suppressor Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-02-11
    Description: Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 A resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 A (ref. 2). A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and beta-sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol(-1) of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process probably present in many dsDNA bacteriophage and possibly viruses such as herpesvirus, which share the HK97 subunit fold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gertsman, Ilya -- Gan, Lu -- Guttman, Miklos -- Lee, Kelly -- Speir, Jeffrey A -- Duda, Robert L -- Hendrix, Roger W -- Komives, Elizabeth A -- Johnson, John E -- GM08326/GM/NIGMS NIH HHS/ -- R01 AI040101/AI/NIAID NIH HHS/ -- R01 AI040101-04/AI/NIAID NIH HHS/ -- R01 AI040101-14/AI/NIAID NIH HHS/ -- R01 AI40101/AI/NIAID NIH HHS/ -- R01 GM47795/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 2;458(7238):646-50. doi: 10.1038/nature07686. Epub 2009 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19204733" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/*chemistry/*metabolism ; Capsid Proteins/chemistry/genetics/metabolism ; Crystallography, X-Ray ; Deuterium Exchange Measurement ; Models, Molecular ; Movement ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Siphoviridae/*chemistry/genetics/*growth & development ; Thermodynamics ; *Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-08-21
    Description: The GTPases Rac1, RhoA and Cdc42 act together to control cytoskeleton dynamics. Recent biosensor studies have shown that all three GTPases are activated at the front of migrating cells, and biochemical evidence suggests that they may regulate one another: Cdc42 can activate Rac1 (ref. 8), and Rac1 and RhoA are mutually inhibitory. However, their spatiotemporal coordination, at the seconds and single-micrometre dimensions typical of individual protrusion events, remains unknown. Here we examine GTPase coordination in mouse embryonic fibroblasts both through simultaneous visualization of two GTPase biosensors and using a 'computational multiplexing' approach capable of defining the relationships between multiple protein activities visualized in separate experiments. We found that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 micro-m behind the edge with a delay of 40 s. This indicates that Rac1 and RhoA operate antagonistically through spatial separation and precise timing, and that RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 activate pathways implicated in reinforcement and stabilization of newly expanded protrusions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Machacek, Matthias -- Hodgson, Louis -- Welch, Christopher -- Elliott, Hunter -- Pertz, Olivier -- Nalbant, Perihan -- Abell, Amy -- Johnson, Gary L -- Hahn, Klaus M -- Danuser, Gaudenz -- F30HL094020/HL/NHLBI NIH HHS/ -- R01 DK037871/DK/NIDDK NIH HHS/ -- R01 GM030324/GM/NIGMS NIH HHS/ -- R01 GM057464/GM/NIGMS NIH HHS/ -- R01 GM057464-09/GM/NIGMS NIH HHS/ -- R01 GM071868/GM/NIGMS NIH HHS/ -- R01 GM071868-04/GM/NIGMS NIH HHS/ -- R01 GM57464/GM/NIGMS NIH HHS/ -- R01 GM71868/GM/NIGMS NIH HHS/ -- T32 GM008719/GM/NIGMS NIH HHS/ -- U54 GM064346/GM/NIGMS NIH HHS/ -- U54 GM064346-099029/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Sep 3;461(7260):99-103. doi: 10.1038/nature08242. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biosensing Techniques ; Cell Movement ; Cell Shape ; Cell Surface Extensions/*metabolism ; Embryo, Mammalian/cytology ; Enzyme Activation ; Fibroblasts/cytology/enzymology ; Mice ; Neuropeptides/metabolism ; Protein Transport ; Time Factors ; cdc42 GTP-Binding Protein/metabolism ; rac GTP-Binding Proteins/metabolism ; rac1 GTP-Binding Protein ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-06-26
    Description: The modern Eastern Equatorial Pacific (EEP) Ocean is a large oceanic source of carbon to the atmosphere. Primary productivity over large areas of the EEP is limited by silicic acid and iron availability, and because of this constraint the organic carbon export to the deep ocean is unable to compensate for the outgassing of carbon dioxide that occurs through upwelling of deep waters. It has been suggested that the delivery of dust-borne iron to the glacial ocean could have increased primary productivity and enhanced deep-sea carbon export in this region, lowering atmospheric carbon dioxide concentrations during glacial periods. Such a role for the EEP is supported by higher organic carbon burial rates documented in underlying glacial sediments, but lower opal accumulation rates cast doubts on the importance of the EEP as an oceanic region for significant glacial carbon dioxide drawdown. Here we present a new silicon isotope record that suggests the paradoxical decline in opal accumulation rate in the glacial EEP results from a decrease in the silicon to carbon uptake ratio of diatoms under conditions of increased iron availability from enhanced dust input. Consequently, our study supports the idea of an invigorated biological pump in this region during the last glacial period that could have contributed to glacial carbon dioxide drawdown. Additionally, using evidence from silicon and nitrogen isotope changes, we infer that, in contrast to the modern situation, the biological productivity in this region is not constrained by the availability of iron, silicon and nitrogen during the glacial period. We hypothesize that an invigorated biological carbon dioxide pump constrained perhaps only by phosphorus limitation was a more common occurrence in low-latitude areas of the glacial ocean.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pichevin, L E -- Reynolds, B C -- Ganeshram, R S -- Cacho, I -- Pena, L -- Keefe, K -- Ellam, R M -- England -- Nature. 2009 Jun 25;459(7250):1114-7. doi: 10.1038/nature08101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Geosciences, Grant Institute, University of Edinburgh, West Main Road, EH10 3JW, Edinburgh, UK. laetitia.pichevin@ed.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19553996" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/chemistry/*metabolism ; Diatoms/metabolism ; Geologic Sediments/chemistry ; Pacific Ocean ; Silicon/analysis ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-07-17
    Description: In recent years, strikingly consistent patterns of biodiversity have been identified over space, time, organism type and geographical region. A neutral theory (assuming no environmental selection or organismal interactions) has been shown to predict many patterns of ecological biodiversity. This theory is based on a mechanism by which new species arise similarly to point mutations in a population without sexual reproduction. Here we report the simulation of populations with sexual reproduction, mutation and dispersal. We found simulated time dependence of speciation rates, species-area relationships and species abundance distributions consistent with the behaviours found in nature. From our results, we predict steady speciation rates, more species in one-dimensional environments than two-dimensional environments, three scaling regimes of species-area relationships and lognormal distributions of species abundance with an excess of rare species and a tail that may be approximated by Fisher's logarithmic series. These are consistent with dependences reported for, among others, global birds and flowering plants, marine invertebrate fossils, ray-finned fishes, British birds and moths, North American songbirds, mammal fossils from Kansas and Panamanian shrubs. Quantitative comparisons of specific cases are remarkably successful. Our biodiversity results provide additional evidence that species diversity arises without specific physical barriers. This is similar to heavy traffic flows, where traffic jams can form even without accidents or barriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Aguiar, M A M -- Baranger, M -- Baptestini, E M -- Kaufman, L -- Bar-Yam, Y -- England -- Nature. 2009 Jul 16;460(7253):384-7. doi: 10.1038/nature08168.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New England Complex Systems Institute, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606148" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Disorders of Sex Development ; Extinction, Biological ; *Genetic Speciation ; Genotype ; Haploidy ; Models, Biological ; Mutation/genetics ; Population Dynamics ; Reproduction/genetics/*physiology ; Sexual Behavior, Animal ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...