ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (255)
  • Chemistry  (255)
  • Cell & Developmental Biology
  • General Chemistry
  • 1995-1999  (171)
  • 1980-1984  (84)
  • 1960-1964
  • 1950-1954
  • 1930-1934
  • 1998  (65)
  • 1995  (106)
  • 1983  (84)
  • 1934
  • Process Engineering, Biotechnology, Nutrition Technology  (255)
Collection
  • Articles  (255)
Publisher
Years
  • 1995-1999  (171)
  • 1980-1984  (84)
  • 1960-1964
  • 1950-1954
  • 1930-1934
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 175-190 
    ISSN: 0006-3592
    Keywords: protein-based polymers ; inverse temperature transitions ; hydrophobic-induced pKa shifts ; waters of hydrophobic hydration ; five axioms for protein engineering; microwave dielectric relaxation ; a universal mechanism for biological energy conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Metabolism is the conversion of available energy sources to those energy forms required for sustaining and propagating living organisms; this is simply biological energy conversion. Proteins are the machines of metabolism; they are the engines of motility and the other machines that interconvert energy forms not involving motion. Accordingly, metabolic engineering becomes the use of natural protein-based machines for the good of society. In addition, metabolic engineering can utilize the principles, whereby proteins function, to design new protein-based machines to fulfill roles for society that proteins have never been called upon throughout evolution to fulfill.This article presents arguments for a universal mechanism whereby proteins perform their diverse energy conversions; it begins with background information, and then asserts a set of five axioms for protein folding, assembly, and function and for protein engineering. The key process is the hydrophobic folding and assembly transition exhibited by properly balanced amphiphilic protein sequences. The fundamental molecular process is the competition for hydration between hydrophobic and polar, e.g., charged, residues. This competition determines Tt, the onset temperature for the hydrophobic folding and assembly transition, Nhh, the numbers of waters of hydrophobic hydration, and the pKa of ionizable functions.Reported acid-base titrations and pH dependence of microwave dielectric relaxation data simultaneously demonstrate the interdependence of Tt, Nhh and the pKa using a series of microbially prepared protein-based poly(30mers) with one glutamic acid residue per 30mer and with an increasing number of more hydrophobic phenylalanine residues replacing valine residues. Also, reduction of nicotinamides and flavins is shown to lower Tt, i.e., to increase hydrophobicity.Furthermore, the argument is presented, and related to an extended Henderson-Hasselbalch equation, wherein reduction of nicotinamides represents an increase in hydrophobicity and resulting hydrophobic-induced pKa shifts become the basis for understanding a primary energy conversion (proton transport) process of mitochondria. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:175-190, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 587-594 
    ISSN: 0006-3592
    Keywords: biotransformation ; membrane bioreactor ; silicone rubber ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Membrane Bioreactor for Biotransformations (MBB) is based on the aqueous/organic two-phase system, and uses a tubular silicone rubber membrane to separate the two liquid phases. This avoids the key problem associated with direct contact two-phase processes, specifically, product emulsification. The baker's yeast mediated reduction of geraniol to citronellol was used as a model biotransformation to demonstrate MBB operation. Values for the overall mass transfer coefficient were determined for geraniol, (2.0 × 10-5 ms-1), and for citronellol, (2.1 × 10-5 ms-1) diffusion across the silicone rubber membrane. Using these values, and the specific activity of the biocatalyst (5 nmols-1g biomass-1), a suitable membrane surface area: biomass ratio was determined as 2.4 × 10-3 m2g biomass-1. The bioreactor was operated at this surface area: biomass ratio and achieved a product accumulation rate 90-95% that of a conventional direct contact two-phase system. The slight reduction in product accumulation rate was shown not to be due to mass transfer limitations with respect to reactant delivery or product extraction. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 587-594, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 426-429 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 495-502 
    ISSN: 0006-3592
    Keywords: optical cell density probes ; turbidity probes ; on-line monitoring ; in situ probes ; mammalian cell bioreactors/fermentors ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: On-line optical cell density probes were implemented to continuously monitor the cell densities in mammalian cell bioreactor and to achieve advanced bioreactor controls. We tested cell density probes from six manufacturers in high cell density bioreactors. When externally calibrated, Aquasant and Ingold backscattering probes produced the most linear probe responses (PR) versus cell density (CD), followed by the ASR and Cerex laser probes. Monitek and Wedgewood transmission probes had lower resolutions. All probes were tested in two murine hybridoma fermentations. Cell densities varied between 1 × 106 cells/mL to 20 × 106 cells/mL and the bioreactors were operated for 5 to 7 weeks. For our bioreactors, Aquasant, Ingold, ASR, Wedgewood, and Monitek probes gave satisfactory responses. Little fouling was observed with any probe at the end of 2 weeks. Fouling was a possibility after 3 weeks in one bioreactor but its effect can be easily corrected. Cell density control and specific perfusion control of bioreactors based on the Aquasant probe were achieved. Implementation of cell density probe based perfusion control, instead of “step perfusion adjustments” based on manual hemacytometer control, will result in smoother operation, healthier cultures, increased medium delivery efficiency, and reduced operational excursions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 461-469 
    ISSN: 0006-3592
    Keywords: trichloroethylene ; bioscrubber ; bubble column ; cometabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s-1 and TCE gas phase loads between 0.07 and 0.40 mg L-1 Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. © 1995 John Wiley & Sons Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 591-603 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The discretized population balance (DPB) of Hounslow et al. (1988) is extended to allow the use of an adjustable discretization of the size domain of the form νi+/ν1=2 1/q (where q ≥ 1 and is an integer). All the advantages of Hounslow et al.'s original work are retained: the zeroth and third moments of the particle-size distribution are correctly predicted, and the DPB is simple to solve with no integration within each size interval. The predicted and analytical particle size distributions are in excellent agreement for the cases of nucleation and growth and aggregation alone in batch and in continuous vessels. High-order moments and self-preserving particle-size distributions are accurately predicted when q ≥ 4.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 123-131 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Industrialized nations face a critical problem in replacing the sources of liquid fuels that traditionally have been supplied by petroleum. One solution that has gained increasing support in this country is the use of ethanol produced by fermentation of renewable biomass as an extender in, or supplement to, gasoline for transportation fuel. Distillation, the present method of separating ethanol from the fermentation broth, is an energy-intensive one and frequently uses more energy than is available from the ethanol recovered. There are many investigations under way to find alternative, less energy-intensive techniques for the ethanol-water separation. The separations method described in this article involves the use of solid materials to preferentially remove ethanol from fermentation broths. Subsequent stripping of the ethanol from the sorbent with a dry gas reduces dramatically the energy required for the separation. Three solid sorbents have been investigated experimentally. Their sorption/desorption characteristics are described, and their incorporation in an ethanol recovery process is evaluated. Three sorbents were investigated: two commercially available divinylbenzene crosslinked polystyrene resins in bead form (one with a nominal surface area of 300 m2/g, the other with 750 m2/g) and an experimental proprietary molecular sieve with hydrophobic properties. Equilibrium adsorption isotherms for two of the sorbents were obtained at ambient temperature (21°C) for ethanol-water solutions containing up to 12 wt. % ethanol. In addition, 40°C isotherms were obtained for the polystyrene sorbents. Although different, the equilibrium isotherms for the sorbents indicated that ethanol could be preferentially sorbed from a dilute solution. Column breakthrough curves indicated very favorable kinetics. Desorption of the ethanol was readily effected with warm (60-80°C), dry nitrogen.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 329-340 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lysine decarboxylase (L-lysine carboxylyase, E.C.4.1.1.18) is immobolized on a carbon dioxide gas-sensing electrode, by copolymerization with gelatin using the bifuncitional agent glutaraldehyde. The enzyme electrodes thus prepared are used in a continuous flow system to measure the concentration of L-lysine in a mixture of amino acids. The measuring time for each sample is about 3 min, including response and rinsing times. The electrode response is linear between 0.01-1 g/L and has a high specificity for L-lysine. The enzyme electrode response to lysine at concentrations below 0.5 g/L is stable on repeated use for at least 500 assays.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 387-401 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Pseudomonas PG-1 cultivated on pristane produced in good amount a heat-stable polymeric substance which showed strong hydrocarbon emulsifying and solubilizing properties. The substance was isolated in crude form and was found to contain 34% protein, 16% carbohydrate, and 40% lipid. The hydrocarbon solubilizing activity of the isolate was strongly inhibited by EDTA but the chelating agent had no effect on the hydrocarbon emulsifying activity. Both activities of the isolate were strongly inhibited by chymotrypsin treatment indicating the importance of the protein moiety for its activity. Hydrocarbon solubilization by the isolate showed a certain degree of specificity to pristane in modest agitation generally used in microbial cultivation, but this specificity was lost by vigorous agitation in a Waring blender. It was proposed that in the first case, solubilization was effected by a solubilizing factor specific to pristane, whereas in the latter case, nonspecific solubilization occurred due to the action of the emulsifying factor. The rate of pristane solubilization by heat-treated culture broth under the conditions of agitation used in cultivation (rotary shaker, 120 rpm) was found to be ca. 750 mg L-1 h-1 which was much larger than the maximal pristane uptake rate of 170 mg L-1 h-1 observed during microbial growth on the substrate. It was concluded that hydrocarbon solubilization could satisfactorily account for the substrate uptake and growth.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 2503-2518 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A computer-controlled headspace gas chromatograph was used to monitor the progress of ethanol production from both aerobic batch and anaerobic continuous fermentations. Using an automatic, electropneumatic sampling system, aliquots of fermentation headspace gas were injected directly onto the column for quantitative ethanol determinations every six minutes. A sample volume of 1 mL permitted liquid ethanol concentrations from 2 to 100 g/L to be measured with better than 3% standard deviation on five repeated injections. Provided fermenter liquid temperature and ionic strength were maintained constant, the signal-tohyphen;concentration ratio remained linear to 80 g/L ethanol. This quantitative gas chromatographic (GC) method is suitable for accurate, precise analysis of multiple solvent fermentations, and is limited only by the elution rate and separating capacity of the GC column.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...