ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-09-09
    Description: Human genetic diseases that resemble accelerated aging provide useful models for gerontologists. They combine known single-gene mutations with deficits in selected tissues that are reminiscent of changes seen during normal aging. Here, we describe recent progress toward linking molecular and cellular changes with the phenotype seen in two of these disorders. One in particular, Werner syndrome, provides evidence to support the hypothesis that the senescence of somatic cells may be a causal agent of normal aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kipling, David -- Davis, Terence -- Ostler, Elizabeth L -- Faragher, Richard G A -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1426-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353794" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Aging ; Cell Division ; DNA Helicases/genetics/physiology ; Exodeoxyribonucleases ; Female ; Gene Expression ; Humans ; Male ; Mice ; Models, Animal ; Mutation ; Phenotype ; RecQ Helicases ; Telomere/metabolism ; *Werner Syndrome/genetics/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-21
    Description: Dietary cholesterol consumption and intestinal cholesterol absorption contribute to plasma cholesterol levels, a risk factor for coronary heart disease. The molecular mechanism of sterol uptake from the lumen of the small intestine is poorly defined. We show that Niemann-Pick C1 Like 1(NPC1L1) protein plays a critical role in the absorption of intestinal cholesterol. NPC1L1 expression is enriched in the small intestine and is in the brush border membrane of enterocytes. Although otherwise phenotypically normal, NPC1L1-deficient mice exhibit a substantial reduction in absorbed cholesterol, which is unaffected by dietary supplementation of bile acids. Ezetimibe, a drug that inhibits cholesterol absorption, had no effect in NPC1L1 knockout mice, suggesting that NPC1L1 resides in an ezetimibe-sensitive pathway responsible for intestinal cholesterol absorption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altmann, Scott W -- Davis, Harry R Jr -- Zhu, Li-Ji -- Yao, Xiaorui -- Hoos, Lizbeth M -- Tetzloff, Glen -- Iyer, Sai Prasad N -- Maguire, Maureen -- Golovko, Andrei -- Zeng, Ming -- Wang, Luquan -- Murgolo, Nicholas -- Graziano, Michael P -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiovascular/Endocrine Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ, 07033-0539, USA. scott.altmann@spcorp.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anticholesteremic Agents/pharmacology ; Azetidines/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/*metabolism ; Cholic Acid/administration & dosage/pharmacology ; Computational Biology ; Enterocytes/*metabolism ; Ezetimibe ; Female ; Gene Expression Profiling ; Humans ; *Intestinal Absorption/drug effects ; Intestine, Small/metabolism ; Jejunum/metabolism ; Liver/metabolism ; Male ; Membrane Proteins/chemistry/genetics/*metabolism ; Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Proteins/chemistry/genetics/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...