ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Other Sources
  • Etna  (4)
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (3)
  • Elsevier  (6)
  • American Meteorological Society
  • Annual Reviews
  • 2020-2023
  • 2010-2014  (6)
  • 1960-1964
  • 1955-1959
  • 1920-1924
  • 2022
  • 2012  (2)
  • 2010  (4)
  • 1921
Collection
  • Articles  (6)
  • Other Sources
Years
  • 2020-2023
  • 2010-2014  (6)
  • 1960-1964
  • 1955-1959
  • 1920-1924
Year
  • 2022
  • 2012  (2)
  • 2010  (4)
  • 1921
  • 2011  (6)
  • 1
    Publication Date: 2020-12-07
    Description: We present a new method for measuring SO2 with the data from the ASTER (Advanced Spaceborne Thermal Emission and Reflectance radiometer) orbital sensor. The method consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations. We present a sensitivity analysis for this method, and two case studies. The sensitivity analysis shows that the selected band ratios depend much less on atmospheric humidity, sulfate aerosols, surface altitude and emissivity than the raw radiances. Measurements with b25% relative precision are achieved, but only when the thermal contrast between the plume and the underlying surface is higher than 10 K. For the case studies we focused on Miyakejima and Etna, two volcanoes where SO2 is measured regularly by COSPEC or scanning DOAS. The SO2 fluxes computed from a series of ten images of Miyakejima over the period 2000–2002 is in agreement with the long term trend of measurement for this volcano. On Etna, we compared SO2 column amounts measured by ASTER with those acquired simultaneously by ground-based automated scanning DOAS. The column amounts compare quite well, providing a more rigorous validation of the method. The SO2 maps retrieved with ASTER can provide quantitative insights into the 2D structure of non-eruptive volcanic plumes, their dispersion and their progressive depletion in SO2.
    Description: R.C. was supported by a grant from F.R.I.A (Fond pour la Recherche Industrielle et Appliquée). GGS acknowledges a PhD grant funded by the project “Sviluppo di sistemi di monitoraggio” funded by Dipartimento di Protezione Civile della Regione Sicilia, INGV (Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania—Italy) and NOVAC (Network for Observation of Volcanic and Atmospheric Change) EU-funded FP6 project no. 18354. P-F. C. is research associate with FRS-FNRS and benefited from its financial support (F.4511.08).
    Description: Published
    Description: 42-54
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: remote sensing, SO2, ASTER, DOAS, Etna, Miyakejima ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units, when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of 〈 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.
    Description: The work was funded by NERC studentship NER/S/A2005/13681 and grant NE/F018010/1.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Etna ; flow unit ; compound flow ; superposition ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Mt. Etna is one of the most studied and extensively monitored volcanoes on earth (Bonaccorso et al., 2004). One of the most frequent hazards are due to the eruption of lava flows, more specifically those flows produced during flank eruptions. These eruptions potentially can produce extensive flows that can inundate densely populated communities of the lower slopes (Guest and Murray, 1979; Behncke et al., 2005). Satellite remote sensing can be used during effusive eruptions to help monitoring the volcano, by determining effusion rates of the flows, aiding in hazard management. The degassing that takes place when magma is rising to the surface can be regularly monitored using ultraviolet spectroscopic methods (e.g. Andres et al., 2001, Sutton et al., 2001). Sulfur Dioxide (SO2) fluxes have been derived from correlation spectrometer (COSPEC) measurements at Mt. Etna (Italy) on a regular basis since 1987 (e.g. Caltabiano et al., 1994; Allard, 1997; Andronico et al., 2005; Burton et al., 2005; Burton et al., in press). Previous studies have compared field-based effusion rates with the measured SO2 fluxes to determine how much of the degassed magma is erupted onto Etna’s flanks in the form of lava flows (Allard, 1997; Harris et al., 2000). However, most of these studies examine bulk volumes erupted over an eruption rather than examining the short-term variations during eruptions. Determining the amount of lava erupted and/or the balance between the amount supplied and the amount erupted remains an unresolved issue. The main objectives of this paper are to examine such short-term variations using satellite-based effusion rates along with regularly measured SO2 fluxes. Using these measurements we determine how and when the volume of supplied magma is balanced by the volume of erupted lava during individual effusive eruptions.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; Thermal Remote Sensing ; SO2 ; Mass Balance ; Effusive Eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Using Etna as a case study location, we examine the balance between the volume of magma supplied to the shallow volcanic system (using ground-based SO2 data) and the volume erupted (using satellite thermal data). We do this for three eruptions of Mt. Etna (Italy) during 2002 to 2006. We find that, during the three eruptions, 2.3×107 m3 or 24% of the degassed volume remained unerupted. However, variations in the degree of partitioning between supplied (Vsupply) and erupted (Verupt) magma occur within individual eruptions over the time scales of days. Consequently, we define and quantify three types of partitioning. In the first case, VsupplybVerupt, i.e. more lava is erupted than is supplied. In such a case previously degassed magma is erupted or magma can rise faster than it is able to degas, as occurred during the open phases of the 2002–2003 and 2004–2005 eruptions, respectively. In the second case, VsupplyNVerupt, i.e. less lava is erupted than is supplied. In such a case, magma can erupt in an explosive manner, as occurred during Phase II of the 2002–2003 eruption, or remain within or below the edifice. In the third case, Vsupply=Verupt, i.e. all supplied magma is erupted. During 2002–2006, over a total of 280 days of eruptive activity, this balancing case applied to 50% of the time.
    Description: Published
    Description: 47-53
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; thermal remote sensing ; SO2 flux ; Effusive eruption ; mass balance ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Infrared satellite images measured with the MODIS instrument of the volcanic plume produced during the 2006 eruption of Mt. Etna were analysed to produce maps of SO2 amount. We used these maps to reconstruct time series of SO2 fluxes by integrating profiles of SO2 orthogonal to the plume advection direction and multiplying with wind speeds from a meteorological model. These data were then compared with a reconstructed time series of SO2 fluxes measured with the FLAME ground-based network of ultraviolet DOAS systems surrounding the volcano. We found weak agreement on 3rd December when little ash was emitted, but this agreement improved when a 0.3 m s−1 wind speed correction factor was used. FLAME and MODIS results were in good agreement on the 6th December, and improved when a –0.3 m s−1 offset was applied. The corrected data revealed that the only period of time when FLAME and MODIS did not track together was coincident with the presence of ash, which interferes with the IR imagery and retrieval of SO2. We highlight that combining two independent time series of SO2 flux allows a precise determination of wind speed, if there is sufficient time-dependent structure in the SO2 signal. The observed increase in SO2 flux prior to the ash emission is interpreted as a quiescent release of an accumulated gas phase that drive eruptive activity, as previously suggested for the southeast crater system of Etna. In this case the SO2 flux signal therefore acted as a precursor to the eruptive ash events. This work demonstrates that quantitative reconstruction of SO2 flux time series is feasible using MODIS data, opening a new frontier in the use of satellite data to interpret volcanic processes, in particular in poorly monitored remote locations.
    Description: European Space Agency's Earth Observation Envelope Programme (EOEP) – Data User Element (project SAVAA).
    Description: Published
    Description: 80-87
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: SO2 flux ; Modis ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Aim of this paper is to identify variations in Very-Long-Period (VLP) source associated with eruptive style changes at Stromboli volcano (Italy) and to retrieve information about the shallow plumbing system that sustains the eruptive activity. We have considered a dataset of 74493 VLP events recorded during the period from January through August 2007, when an effusive eruption occurred (February 27–April 2).We performed a polarization analysis of the entire dataset and divided the considered period into four sub-periods on the basis of polarization characteristics. We then located the events and selected a subset of these events by applying a location quality threshold. The high quality locations demonstrate that during the effusive eruption the VLP sources first moved downward and then moved southwestward. To retrieve information about the geometry of the structures where the source processes take place, we further consider a subset of events and estimate their source mechanisms by using a moment tensor source function (MTSF) inversion technique. Inversion of the waveforms of the VLP events that occurred on February 27 allows us to obtain information about the dynamics of different source centroids distributed along different portions of the shallow magmatic conduits. The structure defined by the locations and source mechanisms shows a greater complexity compared with previous studies and their time variations give an insight into the kinematics of the eruption.
    Description: Published
    Description: 162–171
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: stromboli ; very-long-period events ; seismic source mechanism ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...