ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
  • 1985-1989  (22)
  • 1975-1979
  • 1910-1914
  • 1905-1909  (6)
  • 1999  (10)
  • 1988  (22)
  • 1908  (6)
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Wild radish plants deprived of, and continuously supplied with solution NO−3 for 7 d following 3 weeks growth at high NO−3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO−3-N) among individual organs. Initial levels of NO−3-N accounted for 25% of total plant N. Following termination of NO−3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO−3-supplied plants, and endogenous NO−3-N content was reduced to nearly zero. Older leaves lost NO−3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3−-supplied compared to NO−3-deprived plants. Simulations of the time course of NO−3 depletion for plants of various NH2-N and NO−3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO−3 accumulation as a buffer against fluctuations in the N supply to demand ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 11 (1988), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE = Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP = NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m–2 y–1. This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m–2 y–1 for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2–1.6 vs. 0.6–0.9 × 1015 gC region–1 y–1). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (– 192 mmol m–2 d–1) which is close to NEE in a cultivated forest of Germany (– 210 mmol m–2 d–1). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and – 63 mmol m–2 d–1) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (– 102 to – 104 mmol m–2 d–1). Integrated over a growing season (June to September) we measured a total growing season NEE of – 14 mol m–2 summer–1 (– 168 gC m–2 summer–1) in a 200-y Siberian pine stand and – 5 mol m–2 summer–1 (– 60 gC m–2 summer–1) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m–2 summer–1 = + 84 gC m–2 summer–1). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m–2 to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of – 15.5 mol m–2 summer–1 (– 186 gC m–2 summer–1; European flux network annual averaged – 205 gC m–2 y–1). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13–16 mmol m–2 y–1 for Siberia. It may reach 67 mmol m–2 y–1 in North America, and about 140–400 mmol m–2 y–1 in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Until now, many extracellular matrix proteins, e.g. osteopontin and osteonectin, have been used to determine a cell’s osteogenic maturation. The disadvantage in evaluation of these proteins is their relative wide-ranging appearance throughout the osteogenic differentiation process. Thus, the aim of this study was to establish an immunohistochemical setup using E11, a marker that binds selectively to cells of the late osteogenic cell lineage. In addition, the histochemical expression of the bone matrix proteins osteonectin, osteopontin and fibronectin was compared to that of E11 using monoclonal antibodies. For light microscopical detection of osteogenic markers in cultured cells we developed a simple paraffin technique using a fibrin glue as embedding medium. This allows the handling of cultured cells such as a tissue sample and includes the use of stored biological specimens for further immunohistochemical experiments. We used newborn rat calvariae for whole tissue preparations and for isolation and cultivation of bone cells. In addition, we included the rat osteosarcoma cell line ROS 17/2.8 in this study. For the first time, we have localised E11 in osteocytes of rat calvaria preparations at the electron microscopical level. E11 was detected at plasma membranes of osteocytes and their processes, but not at those of osteoblasts. Accompanying experiments with cultured newborn rat calvaria cells and ROS 17/2.8 cells revealed E11 reactivity on a subset of cells. The results obtained confirm the suitability of the differentiation marker E11 as a sensitive instrument for the characterisation of bone cell culture systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key wordsPinus sylvestris ; Siberia ; Biomass ; Self-thinning ; Forest fire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the “lichen” site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6–10 kgdw m−2 after 200 years depending on stand density and fire history compared to 20 kgdw m−2 in the “Vaccinium” type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5–1.5 and crown cover was 30–60%, whereas LAI reached 2.5 and crown cover was 〉100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope −0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Picea abies ; Forest decline ; Stomatal response ; Photosynthesis ; Mg-deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary CO2 assimilation rate (A) and leaf conductance (g) were measured in the field on intact branches of 35-year-old Picea abies (L.) Karst. trees, in five plots each in a healthy and a declining stand. The declining site included trees with yellow needles. In order to separate atmospheric effects on gas exchange from effects of nutrient deficiency, direct effects of atmospheric pollutants were studied on green needles of different age classes in plots of trees at different stages of visible decline. The effects of nutrient deficiency on gas exchange were studied on a different group of trees showing needles of various degrees of yellowing. CO2 assimilation of green needles at the same leaf conductance fell somewhat only when needles had reached 5 years of age, the oldest age examined in this study. Leaf conductance decreased with increasing needle age, but green needles in the declining stand had leaf conductances similar to those of needles in the healthy stand. Stomata of needles with different magnesium concentrations responded to light and air humidity in all age classes. Thus, as long as needles were green, no dese effect was detectable up to 5 years of exposure to atmospheric emissions. Since all needles, green and yellow, were exposed to the same pollution levels, differences in gas exchange between green and yellow needles could not be explained simply in terms of long-term direct effects of air pollution. Needle magnesium contents were correlated with needle yellowing. Neither needle color change nor the magnesium concentration were related to g, but CO2 uptake at ambient CO2 levels declined with lower magnesium concentration and greater degrees of needle yellowing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Forest decline ; Carbohydrates ; Picea abies ; Growth ; Leaf area index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This is the first in a series of papers on the growth, photosynthetic rate, water and nutrient relations, root distribution and mycorrhizal frequency of two Norway spruce forests at different stages of decline. One of the stands was composed of green trees only while the other included trees ranging in appearance from full green crowns to thin crowns with yellow needles. In this paper we compare the growth and carbohydrate relations of the two stands and examine relationships among growth variables in ten plots. The declining stand produced 65 percent of the wood per ground area compared with the stand in which all trees were green because its foliage produced less wood at any level of leaf area index. The difference in foliage efficiency between the sites could not be explained by differeneces in climate, competition or stand structure. The declining stand appeared to have lower carbon gain as indicated by a smaller increase in reserve carbohydrates before bud break, and weaker sinks for carbohydrates as indicated by less use of the stored carbohydrates than the healthy stand. Thus, growth reduction was probably related to factors which affect both photosynthesis and, even more, the sinks for carbohydrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Forest decline ; Spruce ; Nutrients ; Xylem sap
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nutrient relations (nitrogen, magnesium, calcium, potassium, and manganese) of the xylem sap of spruce trees, Picea abies (L.) Karst., growing at a healthy and a declining site in Northern Bavaria, were followed on a diurnal and seasonal basis between April and October 1985. There were significant differences between the two sites in the xylem sap concentrations of all elements investigated except nitrogen. Nutrient concentrations remained constant diurnally despite changes in transpiration and xylem water potential. However, during periods between precipitation events, concentrations of elements in xylem sap decreased with decreasing xylem water potential. Apparent differences in needle chlorosis of spruce trees at the two sites were associated with consistent differences in nutrient contents of their xylem sap and needles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Picea abies ; Forest decline ; Xylem flow ; Whole tree transpiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The water relations of Picea abies in a healthy stand with green trees only and a declining stand with trees showing different stages of needle yellowing were investigated in northern Bavaria. The present study is based on observations of trees differing in their nutritional status but apparently green on both sites in order to identify changes in the response pattern which might be caused by atmospheric concentrations of air pollutants and could lead to the phenomenon of decline. Transpiration was measured as water flow through the hydroactive xylem using an equilibrium mass-flow measurement system. Total tree transpiration was monitored diurnally, from July 1985 until October 1985 at both sites. The relationship between transpiration and meteorological measurements indicated that transpiration was a linear function of the vapor pressure deficit. No differences in transpiration of green trees were observed between the two sites. Canopy transpiration was 57%–68% of total throughfall and 41%–54% of total rainfall. Due to this positive water balance, soil water potential at 10 and 20 cm depths remained close to-0.02 MPa (max.-0.09 MPa) for most of the summer. Soil water potential was correlated with the difference between the weekly precipitation and transpiration. No differences in the water relations of apparently healthy trees in the two P. abies stands were observed. It is concluded that differences between green trees at the two sites in terms of nutrient relations or growth rate cannot be explained by changes in whole-tree transpiration or soil water status.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Forest decline ; Ectomycorrhizas ; Fine roots ; Picea abies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The development of root tips and apparent ectomycorrhizas was compared in the Fichtelgebirge (FRG) over one growing season in two 30-year-old Picea abies stands, both on soils derived from phyllite but showing varying symptoms of decline. Visual symptoms of tree decline reflected a lower relative and absolute mycorrhizal frequency, a lower number of ectomycorrhizas per m2 leaf area and an uneven vertical distribution of root tips and ectomycorrhizas. The number of apparent ectomycorrhizas per ground area was correlated with the amount of magnesium, calcium, and ammonium, and the pH in the free-drainage soil solution, and with the molar calcium to aluminium ratio in mineral soil extracts. The foliage concentrations of magnesium and calcium were correlated with the numbers of apparent ectomycorrhizas per m2 leaf or ground area. These observations were used to formulate testable hypotheses concerning the role of the root system and the soil environment in forest decline.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...