ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (3)
  • Seismological Society of America (SSA)  (3)
  • American Association of Petroleum Geologists
  • Elsevier
  • Geological Society of America (GSA)
  • Seismological Research Letters  (3)
  • 99852
  • Geologie und Paläontologie  (3)
Sammlung
  • Artikel  (3)
Verlag/Herausgeber
  • Seismological Society of America (SSA)  (3)
  • American Association of Petroleum Geologists
  • Elsevier
  • Geological Society of America (GSA)
  • Seismological Society of America  (11)
Erscheinungszeitraum
Zeitschrift
Thema
  • Geologie und Paläontologie  (3)
  • 1
    Publikationsdatum: 2019
    Beschreibung: 〈span〉〈div〉ABSTRACT〈/div〉Characterizing earthquake ground motions through 3D simulations is becoming standard practice for seismic hazard assessment in urbanized regions. However, accurate ground‐motion predictions require shear‐wave velocity (VS) data at depths that capture the extent of the sedimentary column (usually greater than 30 m), which can be difficult to obtain. We acquired microtremor array data at 11 sites in the Seattle basin, Washington, and applied the wavenumber‐normalized spatial autocorrelation (SPAC) method (krSPAC) to obtain VS at depths as great as 2200 m. In a traditional SPAC approach, modeling high wavenumbers within the SPAC spectrum requires array symmetry. By contrast, in the krSPAC approach we transform observed coherency versus frequency spectra to coherency versus kr (in which k and r are wavenumber and station separation, respectively) prior to VS modeling. Through this transformation, the requirement for array symmetry is eased. We deployed seven‐sensor nested irregular triangular arrays, with nominal interstation spacings that varied from about 300 to 2000 m. Comparison of VS derived from krSPAC to a previous interpretation from ambient‐noise tomography studies suggests a broadly comparable VS structure in the 250–1000 m depth range with improved resolution at shallower depth. At each site, we interpret a high‐velocity Quaternary boundary in which VS increases above 900  m/s. Using this boundary as the reference horizon, we calculate ground‐motion amplification of a factor of up to 2 from the overlying Quaternary sediments between 0.3 and 7 Hz, assuming vertically propagating 〈span〉S〈/span〉 waves.〈/span〉
    Print ISSN: 0895-0695
    Digitale ISSN: 1938-2057
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-11-04
    Beschreibung: We collected new high-resolution P -wave seismic-reflection data to explore for possible faults beneath a roughly linear cluster of early to mid-Holocene earthquake-induced sand blows to the south of Marianna, Arkansas. The Daytona Beach sand blow deposits are located in east-central Arkansas about 75 km southwest of Memphis, Tennessee, and about 80 km south of the southwestern end of the New Madrid seismic zone (NMSZ). Previous studies of these sand blows indicate that they were produced between 10,500 and 5350 yr B.P. (before A.D. 1950). The sand blows are large and similar in size to those in the heart of the NMSZ produced by the 1811–1812 earthquakes. The seismic-reflection profiles reveal a previously unknown zone of near-vertical faults imaged in the 100–1100-m depth range that are approximately coincident with a cluster of earthquake-induced sand blows and a near-linear surface lineament composed of air photo tonal anomalies. These interpreted faults are expressed as vertical discontinuities with the largest displacement fault showing about 40 m of west-side-up displacement at the top of the Paleozoic section at about 1100 m depth. There are about 20 m of folding on reflections within the Eocene strata at 400 m depth. Increasing fault displacement with depth suggests long-term recurrent faulting. The imaged faults within the vicinity of the numerous sand blow features could be a causative earthquake source, although it does not rule out the possibility of other seismic sources nearby. These newly located faults add to a growing list of potentially active Pleistocene–Holocene faults discovered over the last two decades that are within the Mississippi embayment region but outside of the historical NMSZ.
    Print ISSN: 0895-0695
    Digitale ISSN: 1938-2057
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019
    Beschreibung: 〈span〉〈div〉ABSTRACT〈/div〉Characterizing earthquake ground motions through 3D simulations is becoming standard practice for seismic hazard assessment in urbanized regions. However, accurate ground‐motion predictions require shear‐wave velocity (VS) data at depths that capture the extent of the sedimentary column (usually greater than 30 m), which can be difficult to obtain. We acquired microtremor array data at 11 sites in the Seattle basin, Washington, and applied the wavenumber‐normalized spatial autocorrelation (SPAC) method (krSPAC) to obtain VS at depths as great as 2200 m. In a traditional SPAC approach, modeling high wavenumbers within the SPAC spectrum requires array symmetry. By contrast, in the krSPAC approach we transform observed coherency versus frequency spectra to coherency versus kr (in which k and r are wavenumber and station separation, respectively) prior to VS modeling. Through this transformation, the requirement for array symmetry is eased. We deployed seven‐sensor nested irregular triangular arrays, with nominal interstation spacings that varied from about 300 to 2000 m. Comparison of VS derived from krSPAC to a previous interpretation from ambient‐noise tomography studies suggests a broadly comparable VS structure in the 250–1000 m depth range with improved resolution at shallower depth. At each site, we interpret a high‐velocity Quaternary boundary in which VS increases above 900  m/s. Using this boundary as the reference horizon, we calculate ground‐motion amplification of a factor of up to 2 from the overlying Quaternary sediments between 0.3 and 7 Hz, assuming vertically propagating 〈span〉S〈/span〉 waves.〈/span〉
    Print ISSN: 0895-0695
    Digitale ISSN: 1938-2057
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...